PREVISÃO DE CONSUMO DE ENERGIA UTILIZANDO REDE NEURAL COM RETARDO DE TEMPO (TDNN)
Keywords:
Redes neurais artificiais, modelos computacionais, classificação de dadosAbstract
As artificial neural networks (ANN), they are computational models inspired by the way the nervous system of living beings work, these models can be used for processing and classification of data and applications, such as series and function prediction. Thus, this work used a time-delayed neural network (TDNN) to predict the demand for active energy on the P4 bus in the city of Presidente Prudente.
Downloads
References
BERCI, C. D. Observadores Inteligentes de Estado: Propostas. 2008. Dissertação (Mestrado) – Universidade Estadual de Campinas, Campinas. Disponível em: <http://repositorio.unicamp.br/jspui/handle/REPOSIP/258837>. Acesso: 13 agosto 2020.
SILVA, I. N; SPATTI, D. H; FLAUZINO, R. A. Redes Neurais Artificiais Para Engenharia e Ciências Aplicadas – Curso Prático. 1.ed. São Paulo: Artliber, 2010. p. 11.
BEAR, Mark F.; CONNORS, Barry W.; PARADISO, Michael A. Neurociências: desvendando o sistema nervoso. Artmed Editora, 2008.
FERNANDES, J. O famoso potencial de ação. 2019. Artigo publicado em Jaleko. Disponível em: < https://blog.jaleko.com.br/o-famoso-potencial-de-acao/>. Acesso: 13 agosto 2020.
FURTADO, H. & CAMPOS V. H. & MACAU E. (2011). Assimilação de dados com redes neurais artificiais em equações diferenciais. Disponível em: < https://www.researchgate.net/publication/264735169_ASSIMILACAO_DE_DADOS_COM_REDES_NEURAIS_ARTIFICIAIS_EM_EQUACOES_DIFERENCIAIS>. Acesso: 13 agosto 2020. https://doi.org/10.5540/DINCON.2011.001.1.0152
BARBOSA, Anderson Henrique; FREITAS, Marcílio Sousa da Rocha; NEVES, Francisco de Assis das. Confiabilidade estrutural utilizando o método de Monte Carlo e redes neurais. Rem: Rev. Esc. Minas, Ouro Preto, v. 58, n. 3, p. 247-255, Sept. 2005. Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672005000300011&lng=en&nrm=iso>. access on 16 Aug. 2020. https://doi.org/10.1590/S0370-44672005000300011.
SIQUEIRA-BATISTA, Rodrigo et al . As redes neurais artificiais e o ensino da medicina. Rev. bras. educ. med., Rio de Janeiro, v. 38, n. 4, p. 548-556, Dec. 2014. Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-55022014000400017&lng=en&nrm=iso>. access on 20 Aug. 2020. https://doi.org/10.1590/S0100-55022014000400017.
ARANTES MONTEIRO, Raul Vitor et al. Avaliação de algoritmos de treinamento de redes neurais artificiais para predição temporal de geração fotovoltaica. Energética, La Habana, v. 37, n. 3, pág. 218-228, dezembro de 2016. Disponível em <http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59012016000300007&lng=en&nrm=iso>. acesso em 20 de agosto de 2020.
MACHADO, Wagner Carrupt; FONSECA JUNIOR, Edvaldo Simões da. Redes neurais artificiais aplicadas na previsão do VTEC no Brasil. Bol. Ciênc. Geod., Curitiba, v. 19, n. 2, p. 227-246, June 2013. Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1982-21702013000200005&lng=en&nrm=iso>. access on 20 Aug. 2020. https://doi.org/10.1590/S1982-21702013000200005.