Fatigue detection with facial images analysis
Keywords:
Fatigue; Image Processing; Computer VisionAbstract
A large number of accidents and injuries caused by the presence of fatigue on people has caused a concern about this, more attention has been taken in recent years. Studying and developing techniques capable of detecting fatigue in a user has become possible thanks to the continuous evolution of technology and computer vision. Image processing has become a strong tool because does not interfere the driving of the vehicle, however, there are interferences that make difficult the analysis of the driver through the computer vision, these interferences are difficult to control because they involve the luminosity of the environment, cost of computational power of the tool and unnecessary objects in the environment. computer vision techniques were used: Template Matching, Hough Transfor and Landmarks, Python language with the help of the OpenCV library and use of low cost hardware such as Raspberry. The results were satisfactory and show that the combination of techniques and controlled light makes it possible to detect fatigue and alert the driver with great accuracy.
Downloads
References
BRASIL. Ministério da Segurança Pública. Polícia Rodoviária Federal. Disponível em: https://www.prf.gov.br/portal/dados-abertos/acidentes/acidentes#wrapper. Acesso em: 18 out. 2018.
CHIEH, T.C.; MUSTAFA, M.M.; HUSSAIN, A.; HENDI, S.F.; MAJLIS, B.Y. Development of Vehicle Driver Drowsiness Detection System Using Electrooculogram (EOG) . In: INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, & SIGNAL PROCESSING WITH SPECIAL TRACK ON BIOMEDICAL ENGINEERING. 1., 2005, Kuala Lumpur, Malaysia. Anais [...]. Lumpur, Malaysia, 2005. Disponível em: http://ieeexplore.ieee.org/document/4977181 Acesso em: 09 fev. 2018
GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing. 3. ed. Reading, Massachusetts: Addison-Wesley, 1993.
HE, J.; ROBERSON, S.; FIELDS, B.; PENG, J.; CIELOCHA, S.; COLTEA, J. Fatigue Detection using Smartphones. J Ergonomics, v. 3, n.3, p. 1-7. doi:10.4172/2165- 7556.1000120
Disponível em: https://www.omicsonline.org/open-access/fatigue-detection-using-smartphones-2165-7556.1000120.php?aid=21520. Acesso em: 05 out. 2017.
HORNG, W. B.; CHEN, C. Y.; CHANG, Y.; FAN, C. H. Driver Fatigue Detection Based on Eye Tracking and Dynamic Template Matching. In: IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, 2004. Taipei, Taiwan. Anais [...]. Taiwan, 2004. Disponível em: https://ieeexplore.ieee.org/document/1297400/. Acesso em: 20 set. 2018.
NASCIMENTO, A. V. do; GONZAGA, A. Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa. 2005. Dissertação (Mestrado em Engenharia Elétrica) – USP, São Carlos, 2005. Disponível emwww.teses.usp.br/teses/disponiveis/18/.../Dissert_Nascimento_AndreiaV_corrigido.pdf . Acesso em: 28 ago. 2018.
QUEIROZ, K. L. de. Sistema baseado em vídeo para detecção de sonolência em motoristas. 2011. Dissertação (Mestrado) – Universidade de Brasília, Brasília, DF, 2011. Disponível em: repositorio.unb.br/bitstream/10482/10704/1/2011_KedsonLopesQueiroz.pdf. Acesso em: 27 ago. 2018.
ROQUE, P. M. da S. Técnicas de Visão Computacional para a detecção automática de padrões de fadiga. 2013. Dissertação (Mestrado em Informática) – Universidade de Évora, Évora, PO, 2013. Disponível em: https://dspace.uevora.pt/rdpc/bitstream/10174/9085/1/Tecnicas%20de%20Visao%20Computacional%20para%20a%20detecao%20automatica%20de%20padroes%20de%20fadiga.pdf. Acesso em: 27 ago. 2018.
SILVA, C.; SCHNITMAN, L.; OLIVEIRA, L. Detecção de landmarks em imagens faciais baseada em informações locais. Disponível em: https://www.researchgate.net/publication/271825271_Detection_of_Facial_Landmarks_Using_Local-Based_Information. Acesso em: 10 out. 2018.
UENO, H.; KANEDA, M.; TSUKINO, M. Development of drowsiness detection system. In: VNIS'94 VEHICLE NAVIGATION AND INFORMATION SYSTEMS CONFERENCE. 1994. Yokohama. Proceedings [...].Yokohama, Japan,1994 Disponível em: http://ieeexplore.ieee.org/document/396873 Acesso em: 09 fev. 2018.
VIOLA, P.; JONES, M.J. Robust Real-Time Face Detection. International Journal of Computer Vision, v.56, n.2, p.137-154, 2004. Disponível em: https://link.springer.com/article/10.1023/B:VISI.0000013087.49260.fb. Acesso em: 19 set. 2018.
VURAL, E.; CETIN, M.; ERCIL, A.; LITTLEWORT, G; BARLETT, M.; MOVELLAN, J. Drowsy Driver Detection Through Facial Movement Analysis. In: HCI: International Workshop on Human-Computer Interaction, 2007.
Disponível em < https://link.springer.com/chapter/10.1007/978-3-540-75773-3_2. Acesso em: 09 fev. 2018.