POTÊNCIA GERADA EM UM SISTEMA DINÂMICO DE CAPTAÇÃO DE ENERGIA CONTROLADO VIA MÉTODO LQR: COMPARAÇÃO ENTRE EXCITAÇÃO PERIÓDICA E NÃO-IDEAL
Palavras-chave:
Captação de Energia, Controle Ótimo Linear, Excitação Periódica e Não-IdealResumo
A maior parte do controle ativo em sistemas dinâmicos vibracionais é usado para reduzir vibrações. No entanto, o objetivo desta pesquisa é especificamente o uso de vibrações para gerar energia elétrica, de tal forma que a vibração se torne um fenômeno desejado. Dessa forma, a intenção é utilizar o Controle Ideal via Regulador Quadrático Linear (LQR), resultando em maior transdução de energia vibracional para elétrica, através da alteração do tipo de excitação e através de uma análise da estabilidade e dos efeitos que o controle provoca sobre o sistema. O sistema consiste em uma massa-mola-amortecedor bimodal com acoplamento piezoelétrico-mecânico que sofre excitação periódica e não-ideal. Objetiva-se determinar qual gera mais energia.
Downloads
Referências
ALMEIDA, E. F.; CHAVARETTE, F. R. Captação de energia e análise de estabilidade em um transdutor piezelétrico com excitação não-ideal. In: ASSOCIAÇÃO BRASILEIRA DE ENGENHARIA E CIÊNCIAS MECÂNICAS - ABCM. Anais do XXV Congresso Nacional de Estudantes de Engenharia Mecânica - CREEM 2018. 2018. v. 3, p. 194-200. Disponível em: https://abcm.org.br/uploads-/Anais%20do%20XXV%20CREEM%20vol.3.pdf
ALMEIDA, E. F.; CHAVARETTE, F. R.; FERREIRA, D. C. Optimal linear control applied in a energy harvesting dynamic system with periodic excitation. In: ASSOCIAÇÃO BRASILEIRA DE ENGENHARIA E CIÊNCIAS MECÂNICAS - ABCM. 25th ABCM International Congress of Mechanical Engineering - COBEM 2019. 2019. Disponível em: https://abcm.org.br/anais/cobem.
BALTHAZAR, J. M. et al. An overview on non-ideal vibrations. Meccanica, Kluwer Academic Publishers, v. 38, n. 6, p. 613-621, 2003. https://doi.org/10.1023/A:1025877308510
BLARIGAN, L. V.; DANZL, P.; MOEHLIS, J. A broadband vibrational energy harvester. Applied Physics Letters, AIP, v. 100, n. 25, p. 253904, 2012. https://doi.org/10.1063/1.4729875
CASTRUCCI, P. B. de L.; BITTAR, A. Controle automático. [S.l.]: Grupo Gen-LTC, 2000.
CHALLA, V. R. et al. A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures, IOP Publishing, v. 17, n. 1, p. 015035, 2008. https://doi.org/10.1088/0964-1726/17/01/015035
CHAVARETTE, F. Control design applied to a non-ideal structural system with behavior chaotic. International Journal of Pure and Applied Mathematics, v. 86, p. 487-500, 07 2013. https://doi.org/10.12732/ijpam.v86i3.3
CHAVARETTE, F. R. et al. On non-linear dynamics and control designs applied to the ideal and non-ideal variants of the Fitzhugh-Nagumo (FN) mathematical model. Communications in Nonlinear Science and Numerical Simulation, Elsevier, v. 14, n. 3, p. 892-905, 2009a. https://doi.org/10.1016/j.cnsns.2007.10.016
CHAVARETTE, F. R. et al. On non-linear dynamics and an optimal control synthesis of the action potential of membranes (ideal and non-ideal cases) of the Hodgkin-Huxley (HH) mathematical model. Chaos, Solitons & Fractals, Elsevier, v. 39, n. 4, p. 1651-1666, 2009b. https://doi.org/10.1016/j.chaos.2007.06.016
CVETICANIN, L.; ZUKOVIC, M.; BALTHAZAR, J. M. Dynamics of mechanical systems with non-ideal excitation. [S.l.]: Springer, 2018. https://doi.org/10.1007/978-3-319-54169-3
EICHHORN, C. et al. A piezoelectric harvester with an integrated frequency-tuning mechanism. Power MEMS, p. 45-48, 2009.
ERTURK, A.; INMAN, D. J. Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. Journal of Sound Vibration, v. 330, p. 2339-2353, May 2011. Disponível em: http://adsabs.harvard-.edu/abs/2011JSV...330.2339E. https://doi.org/10.1016/j.jsv.2010.11.018
FERREIRA, D. C. et al. Multimodal energy harvesting efficiency enhancement via linear matrix inequalities control driven. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 4, n. 1, 2016. https://doi.org/10.5540/03.2016.004.01.0012
FERREIRA, D. C.; CHAVARETTE, F. R.; PERUZZI, N. J. Linear matrix inequalities control driven for non-ideal power source energy harvesting. Journal of Theoretical and Applied Mechanics, v. 53, n. 3, p. 605-616, 2015. https://doi.org/10.15632/jtam-pl.53.3.605
FERREIRA, D. da C.; CHAVARETTE, F. R.; PERUZZI, N. J. Non-linear energy harvesting system efficiency comparison from periodic to non-ideal excitation. International Journal of Pure and Applied Mathematics, Academic Publications, Ltd., v. 92, n. 5, p. 745-755, 2014a. https://doi.org/10.12732/ijpam.v92i5.9
FERREIRA, D. da C.; CHAVARETTE, F. R.; PERUZZI, N. J. Optimal linear control driven for piezoelectric non-linear energy harvesting on nonideal excitation sourced. In: TRANS TECH PUBL. Advanced Materials Research. [S.l.], 2014b. v. 971, p. 1107-1112. https://doi.org/10.4028/www.scientific.net/AMR.971-973.1107
HARNE, R. L.; WANG, K. A review of the recent research on vibration energy harvesting via bistable systems. Smart materials and structures, IOP Publishing, v. 22, n. 2, p. 023001, 2013. https://doi.org/10.1088/0964-1726/22/2/023001
JUNG, H.-J. et al. A hybrid electromagnetic energy harvesting device for low frequency vibration. In: INTERNATIONAL SOCIETY FOR OPTICS AND PHOTONICS. Active and Passive Smart Structures and Integrated Systems 2013. [S.l.], 2013. v. 8688, p. 86881I. https://doi.org/10.1117/12.2010014
KONONENKO, V. O. Vibrating systems with a limited power supply. [S.l.]: Iliffe, 1969.
LIU, J.-Q. et al. A mems-based piezoelectric power generator array for vibration energy harvesting. Microelectronics Journal, Elsevier, v.39, n. 5, p. 802-806, 2008. https://doi.org/10.1016/j.mejo.2007.12.017
NAYFEH; MOOK. Nonlinear oscillations. [S.l.]: New York, NY: Wiley-Interscience, 1979.
SARI, I.; BALKAN, T.; KULAH, H. An electromagnetic micro power generator for wideband environmental vibrations. Sensors and Actuators A: Physical, Elsevier, v. 145, p. 405-413, 2008. https://doi.org/10.1016/j.sna.2007.11.021
SCHLICHTING, A.; FINK, E.; GARCIA, E. A low-loss hybrid rectification technique for piezoelectric energy harvesting. Smart Materials and Structures, IOP Publishing, v. 22, n. 9, p. 095028, 2013. https://doi.org/10.1088/0964-1726/22/9/095028
TANG, L.; YANG, Y.; SOH, C. K. Broadband vibration energy harvesting techniques. In: Advances in energy harvesting methods. [S.l.]: Springer, 2013. p. 17-61. https://doi.org/10.1007/978-1-4614-5705-3_2
WANG, Y.; INMAN, D. J. A survey of control strategies for simultaneous vibration suppression and energy harvesting via piezoceramics. Journal of Intelligent Material Systems and Structures, Sage Publications Sage UK: London, England, v. 23, n. 18, p. 2021-2037, 2012. https://doi.org/10.1177/1045389X12444485
WU, W. -J. et al. Tunable resonant frequency power harvesting devices. In: INTERNATIONAL SOCIETY FOR OPTICS AND PHOTONICS. Smart Structures and Materials 2006: Damping and Isolation. [S.l.], 2006. v. 6169, p. 61690A. https://doi.org/10.1117/12.658546
YOUNGSMAN, J. M. et al. A model for an extensional mode resonator used as a frequency-adjustable vibration energy harvester. Journal of Sound and Vibration, Elsevier, v. 329, n. 3, p. 277-288, 2010. https://doi.org/10.1016/j.jsv.2009.09.011