Root and shoot development of corn seedlings as affected by multifunctional microorganisms
Keywords:
Zea mays L, rhizobacteria, sustaintability, rootAbstract
Corn is the most produced cereal in the world, due to its high production and, mainly, its wide use (OLIVEIRA, 2019). The crop is one of the most important agricultural commodities worldwide, and it is the main energy source for animal feed, in the cuisine of several countries, and an important source in the production of renewable fuel (CONAB, 2019). The world's largest producers are the United States, China and Brazil, which produce approximately 392, 257 and 82 million tons, respectively (FAO, 2021).
Corn is an important product in the Brazilian agriculture, and it is produced practically throughout the country, as an important source of income and with good participation in the national economy (MIRANDA, 2018). The current production model most used for this crop is based on excessive applications of pesticides and synthetic fertilizers, generating severe problems for the environment and also financial impacts. These damages caused by the intensive use of synthetic fertilizers, herbicides, fungicides and insecticides show the need to seek alternatives that provide the sustainable development of agriculture (LOPES; ALBUQUERQUE, 2018). According to Silva et al. (2020), among the existing alternatives to increase the efficiency of the use of chemical fertilizers and reduce the amount applied in agricultural production environments, the use of microorganisms that promote plant growth can be highlighted.
Among the microorganisms selected in the rhizosphere, plant growth-promoting rhizobacteria (PGPR) stand out, which have a high affinity for occupying the rhizospheric environment and are capable of performing activities related to promoting plant development (CARDOSO; ANDREOTE, 2016). This plant growth promotion is linked to the ability of this group of microorganisms to act positively on physiological growth characteristics, using different mechanisms of action, such as nutrient solubilization, inhibition of pest and plant pathogen development, production of bactericides, antifungals, growth hormones, siderophores and biological nitrogen fixation (LAKSHMANAN et al., 2015). Several plant growth-promoting rhizobacteria have been frequently isolated from the rhizosphere of several cultivated plants and have been studied, such as: Agrobacterium, Arthrobacter, Bacillus, Burkholderia, Pseudomonas, Serratia, Azotobacter, Staphylococcus e Azospirillum (MAHMOOD et al., 2016).
In this context, the use of multifunctional microorganisms represents a biotechnology option whose objective is to promote plant growth by promoting greater development of the root system, increasing nutrient absorption, gas exchange efficiency and, consequently, phytomass production and grain yield (NASCENTE et al., 2017). The greater root development promoted by multifunctional microorganisms can also promote, in addition to greater use of nutrients, easier access to water (GLICK, 2012). Several studies report greater plant development with the use of multifunctional microorganisms and cite the production of hormones as one of the possible causes for this greater development in rice cultivation (SPERANDIO et al., 2017; SOUSA; NASCENTE; FILIPPI, 2019; FERNANDES et al., 2021), wheat (SPAEPEN et al., 2008) and corn (RAZA; FAISAL, 2013; NAVEED et al., 2015), demonstrating the potential use of this biotechnology in the Poaceae family.
Studies done by researchers of Embrapa Rice and Bean allowed the identification of beneficial rhizobacteria collected in upland rice fields (FILIPPI et al., 2011). After selection and characterization, greenhouse studies confirmed the potential use of these multifunctional microorganisms, which promoted significant increases in gas exchange and in the production of aboveground biomass of upland and irrigated rice plants (NASCENTE et al., 2017). Therefore, it became interesting to carry out studies to evaluate the use of these isolates in different cultures of great importance, as has already been done in upland rice, irrigated rice, common beans and soybeans (this included the work of the staff). Thus, it is also possible that these microorganisms positively affect the development of corn plants. The objective of this work was to determine the effect of seed inoculation with multifunctional microorganisms on root and shoots development of corn seedlings.
Downloads
References
ARSENAULT, J.-L.; POULCUR, S.; MESSIER, C.; GUAY, R. WinRHlZO™, a Root-measuring System with a Unique Overlap Correction Method. Hortscience, [S.L.], v. 30, n. 4, p. 906-906, jul. 1995. DOI: http://10.21273/HORTSCI.30.4.906D
BRACCINI, A. L., DAN, L. G. M., PICCININ, G. G., ALBRECHT, L. P., BARBOSA, M.C.; ORTIZ, A.H.T. Seed inoculation with Azospirillum brasilense, associated with the use of bioregulators in corn. Revista Caatinga, v.25, n. 2, p. 58-64, 2012.
CARDOSO, E. J. B. N.; ANDREOTE, F. D. Microbiologia do solo. 2 ed., Piracicaba: Esalq. 2016.
CARVALHO, D. D. C.; OLIVEIRA, D. F.; PASQUAL, M.; CAMPOS, V. P. Rizobactérias produtoras de promotores do crescimento de plantas. Pesquisa Agropecuária Tropical, [S. l.], v. 39, n. 4, p. 338–341, 2009.
CASSÁN, Fabricio; DIAZ-ZORITA, Martín. Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biology And Biochemistry, [S.L.], v. 103, p. 117-130, dez. 2016. DOI: http://dx.doi.org/10.1016/j.soilbio.2016.08.020.
CHAGAS, L.F Borges; CHAGAS JUNIOR, A.F; CARVALHO, M Rodrigues de; MILLER, L de Oliveira; COLONIA, B.S Orozco. Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus jco) and effects on rice biomass. Journal Of Soil Science And Plant Nutrition, [S.L.], v. 15, n. 3, p. 794-804, 2015. DOI: http://dx.doi.org/10.4067/s0718-95162015005000054.
CHAGAS, L. F. B.; MARTINS, A. L. L.; CARVALHO FILHO, M. R. DE; MILLER, L. DE O.; OLIVEIRA, J. C. DE; CHAGAS JUNIOR, A. F. Bacillus subtilis e Trichoderma sp. no incremento da biomassa em plantas de soja, feijão-caupi, milho e arroz. Agri-Environmental Sciences, v. 3, n. 2, p. 10-18, 2018.
CONAB - Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira De Grãos: Décimo segundo levantamento - Safra 2018/19, v. 6, ,12, 2019.
DOURADO NETO, D.; DARIO, G.J.A.; BARBIERI, A.P.P.; MARTIN, T.N. Ação de bioestimulante no desempenho agronômico de milho e feijão. Bioscience Journal, Uberlândia, v. 30, n. Ju 2014, p. 371-379, 2014.
FAO (Organização das Nações Unidas para Alimentação e Agricultura - Divisão de Estatística). Dados de produção e colheita. 2021. Disponivel: < http://www.fao.org/faostat/en/#data/QC/visualize> Acesso: Agosto, 2021.
FERNANDES, J. P. T; NASCENTE, A. S.; FILIPPI, M. C. C.; SILVA, M. A. (2021). Upland rice seedling performance promoted by multifunctional microorganisms. Semina: Ciências Agrárias, [S.L.], v. 1, n. 42, p. 429-438, 19 jan. 2021. DOI: http://dx.doi.org/10.5433/1679-0359.2021v42n1p429.
FILIPPI, M. C. C.; SILVA, G. B.; SILVA-LOBO, V. L.; CÔRTES, M. V. C. B.; MORAES, A. J. G.; PRABHU, ANNE S. Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, [S.L.], v. 58, n. 2, p. 160-166, ago. 2011. DOI: http://dx.doi.org/10.1016/j.biocontrol.2011.04.016.
GLICK, B. R. Plant Growth-Promoting Bacteria: mechanisms and applications. Scientifica, [S.L.], v. 2012, p. 1-15, 2012. DOI: http://dx.doi.org/10.6064/2012/963401.
HAMEEDA, B.; HARINI, G.; RUPELA, O.P.; WANI, S.P.; REDDY, G. Growth promotion of corn by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiological Research, [S.L.], v. 163, n. 2, p. 234-242, 2008. DOI: http://dx.doi.org/10.1016/j.micres.2006.05.009.
HUNGRIA, M. Inoculação com Azospirillum brasiliense: inovação em rendimento a baixo custo/Mariangela Hungria. – Londrina: Embrapa Soja, 2011.
KADO, C. I.; HESKETT, M. G. Selective Media for Isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology, [S.L.], v. 60, n. 6, p. 969, 1970. DOI: http://dx.doi.org/10.1094/phyto-60-969.
KAUSHAL, M. Portraying Rhizobacterial Mechanisms in Drought Tolerance: A Way Forward Toward Sustainable Agriculture. 2019. In: PGPR Amelioration in Sustainable Agriculture. p. 195-216. 2019
LAKSHMANAN, V.; SHANTHARAJ, D.; LI, G.; SEYFFERTH A. L.; SHERRIER, D. J.; BAIS, H. P. A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta, [S.L.], v. 242, n. 4, p. 1037-1050, 10 jun. 2015. DOI: http://dx.doi.org/10.1007/s00425-015-2340-2.
LOPES, C. V. A.; ALBUQUERQUE, G. S. C. Agrotóxicos e seus impactos na saúde humana e ambiental: uma revisão sistemática. Saúde em Debate, [S.L.], v. 42, n. 117, p. 518-534, jun. 2018. DOI: http://dx.doi.org/10.1590/0103-1104201811714.
MAHMOOD, A.; TURGAY, O. C.; FAROOQ, M.; HAYAT, R. Seed biopriming with plant growth promoting rhizobacteria: a review. Fems Microbiology Ecology, [S.L.], v. 92, n. 8, p. 1-14, 23 maio 2016. Oxford University Press (OUP). http://dx.doi.org/10.1093/femsec/fiw112.
MILANI, R.; SANTOS, R. M.; BENTES, L. L.; KANDASAMY, S.; LAZAROVITS, G.; RIGOBELO, E. C. Bacillus subtilis isolates with different abilities to Promote plant growth in corn, cotton and soybean Crops isolation and characterization of bacterial Strains. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, v. 21, n. 4, p. 827-836, 2019.
MILLÉO, M. V. R.; CRISTÓFOLI, I. Avaliação da eficiência agronômica da inoculação com AzzoFix® (Azospirillum brasilense, estirpes: abv5 e abv6) sobre a cultura do milho. Scientia Agraria, [S.L.], v. 17, n. 3, p. 14-23, 6 mar. 2017. DOI: http://dx.doi.org/10.5380/rsa.v17i3.44630
MIRANDA, R. A. Uma história de sucesso da civilização. A Granja, v. 74, n. 829, p. 24-27, 2018.
NASCENTE, A. S.; FILIPPI, M. C.; LANNA, A. C.; SOUZA, A. C. DE; SILVA LOBO, V. L. DE; SILVA,
G. B. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, v. 24, n. 3, p. 2956-2965, 2017. DOI: http://10.1007/s11356-016-8013-2
NAVEED, M.; QURESHI, M. A.; ZAHIR, Z. A.; HUSSAIN, M. B.; SESSITSCH, A.; MITTER, B. L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of corn by Burkholderia phytofirmans PsJN. Annals Of Microbiology, [S.L.], v. 65, n. 3, p. 1381-1389, 2014. DOI: http://dx.doi.org/10.1007/s13213-014-0976-y.
Oliveira, A. S. Desempenho agronômico do milho segunda safra em função da cultura antecessora e métodos de inoculação com Azospirillum brasilense. 2019. Dissertação (Mestrado) - Universidade Federal de Goiás, Unidade Acadêmica Especial de Ciências Agrárias, Programa de Pós Graduação em Agronomia, Jataí-GO. 2019.
RAZA, F. A.; FAISAL, M. Growth promotion of corn by desiccation tolerant Micrococcus luteus-chp37 isolated from Cholistan desert, Pakistan. Australian Journal of Crop Science, v. 7, n. 11, p. 1693-1698, 2013.
SHAO, J.; XU, Z.; ZHANG, N.; SHEN, Q.; ZHANG, R. Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biology And Fertility Of Soils, [S.L.], v. 51, n. 3, p. 321-330, 2014. DOI: http://dx.doi.org/10.1007/s00374-014-0978-8.
SILVA, C. F. B.; BRITO, T. L.; TANIGUCHI, C. A. K.; LOPES, L. A.; PINTO, G. A. S.; CARVALHO, A. C. P. P. Growth-promoting potential of bacterial biomass in the banana micropropagated plants. Revista Brasileira de Engenharia Agrícola e Ambiental, [S.L.], v. 22, n. 11, p. 782-787, 2018. DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v22n11p782-787.
SILVA, M. A.; NASCENTE, A. S.; FILIPPI, M. C. C.; LANNA, A. C.; SILVA, G. B. DA; SILVA, J. F. A. Individual and combined growth-promoting microorganisms affect biomass production, gas exchange and nutrient content in soybean plants. Revista Caatinga, [S.L.], v. 33, n. 3, p. 619-632, set. 2020. DOI: http://dx.doi.org/10.1590/1983-21252020v33n305rc.
SOUSA, I. M.; NASCENTE, A. S.; FILIPPI, M. C. C. Bactérias promotoras do crescimento radicular em plântulas de dois cultivares de arroz irrigado por inundação. Colloquium Agrariae, [S. l.], v. 15, n. 2, p. 140–145, 2019. doi: http://10.5747/ca.2019.v15.n1.a293
SOUSA, S. M.; OLIVEIRA, C. A.; ANDRADE, D. L.; CARVALHO, C. G.; RIBEIRO, V. P.; PASTINA, M. M.; MARRIEL, I. E.; LANA, U. G. P. Cepas de Bacillus e Azospirillum aumentam o crescimento e a absorção de nutrientes em milho em condições hidropônicas. Sete Lagoas: Embrapa Milho e Sorgo. 2018.
SPAEPEN, S.; DOBBELAERE, S.; CROONENBORGHS, A.; VANDERLEYDEN, J. Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant And Soil, [S.L.], v. 312, n. 1-2, p. 15-23, 2008. DOI: http://dx.doi.org/10.1007/s11104-008-9560-1.
SPERANDIO, E. M.; VALE, H. M. M.; REIS, M. S.; CORTES, M. V. C. B.; LANNA, A. C.; FILIPPI, M. C. C. Evaluation of rhizobacteria in upland rice in Brazil: growth promotion and interaction of induced defense responses against leaf blast (Magnaporthe oryzae). Acta Physiologiae Plantarum, [S.L.], v. 39, n. 12, p. 258-270, 2017. DOI: http://dx.doi.org/10.1007/s11738-017-2547-x.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Colloquium Agrariae. ISSN: 1809-8215

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.