Synthesis, Description and Evaluation of Biochar Produced By Bovine Ruminal Residue From Slaughterhouse For Partial Replacement Of Concrete Cement

Authors

  • Alexandre Teixeira de Souza Centro Universitário de Adamantina – Unifai
  • Maria Luiza Garcia Lopes Molina Centro Universitário de Adamantina – Unifai
  • Thaise Monique Iurrino Centro Universitário de Adamantina

Keywords:

Biochar. Pyrolysis. Green Concrete. Bovine Ruminal Residue. Sustainability.

Abstract

Nowadays, the cement industry faces several challenges, such as: fossil fuels reservation exhaustion, raw material scarcity, growing demand for building materials, as well as crescent environmental concerns, like air pollution and climate changes. The cement production is directly related to CO₂ emission, one of the main greenhouse gases. Therefore, this search’s objective is to demonstrate the biochar as a potential additive to replace cement in concrete, improving hydration due to its internal healing and nucleation effects. The biochar was prepared by bovine ruminal residue pyrolysis for 1 and 2% replacement of concrete cement. Immediate analyzes were also carried out to get information about biochar’s composition. It was observed in the compressive strength tests, a considerable increase in concrete strength with biochar’s partial replacement. During pyrolysis, the carbon from biomass raw material is sequestered in the chemical structure of the biochar produced that would be released into the atmosphere through decomposition or degradation of biomass. Using material produced by waste to partially substitute cement is an economic and sustainable strategy to achieve green concrete mixtures.

Downloads

Download data is not yet available.

References

ABNT, ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Carvão vegetal - Análise imediata - Método de ensaio: NBR 8112. Rio de Janeiro, 1983, p. 6.

______. Concreto fresco - Determinação da massa específica, do rendimento e do teor de ar pelo método gravimétrico: NBR 9833. Rio de Janeiro, 2009.

______. Projeto de estruturas de concreto - Procedimento: NBR 6118. Rio de Janeiro, 2014.

______. Concreto – Procedimento para moldagem e cura de corpos de prova: NBR 5738. Rio de Janeiro, 2015a.

______. Concreto para fins estruturais - Classificação pela massa específica, por grupos de resistência e consistência: NBR 8953. Rio de Janeiro, 2015b.

______. Concreto - Ensaio de compressão de corpos de prova cilíndricos: NBR 5739. Rio de Janeiro, 2018.

BERARDI, U., M. NALDI. The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance, Energy Build, 2017, p. 262–275. Disponivel em: <https://www.sciencedirect.com/science/article/abs/pii/S0378778816314542>. Acesso em: 12 mai. 2020.

BERNARDES, J. Pesquisadores da Poli desenvolvem nova técnica que diminui emissão de CO2 na produção de cimento. Tecnologia, USP Online, São Paulo, 17 abr. 2013. Disponível em: <https://www5.usp.br/noticias/tecnologia-2/pesquisadores-da-poli-desenvolvem-nova-tecnica-que-diminui-emissao-de-co2-na-producao-de-cimento/>. Acesso em: 15 set. 2020.

BISKRI, Y., D. ACHOURA, N. CHELGHOUM, M. MOURET. Mechanical and durability characteristics of High Performance Concrete containing steel slag and crystalized slag as aggregates, Constr. Build. Mater, 2017, p. 167–178. Disponivel em: <https://www.sciencedirect.com/science/article/abs/pii/S095006181730973X>. Acesso em: 12 mai. 2020.

BRANDÃO, F.L. Estudo Computacional da Pirólise de Bagaço de Cana-de-Açúcar e Madeira em Reator de Leito Fluidizado, 2015. 149 p. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Federal do Rio de Janeiro, Rio de Janeiro. 2015. Disponível em: <http://w2.files.scire.net.br/atrio/ufrj-pem_upl/THESIS/1780/pemufrj2015mscfilipeleitebrandao_20160125153156834.pdf>. Acesso em 15 set. 2020.

BRIDGWATER, A.V. Renewable fuels and chemicals by thermal processing of biomass, Chem. Eng, 2003, p. 87–102. Disponivel em: <https://www.sciencedirect.com/science/article/abs/pii/S1385894702001420>. Acesso em: 12 mai. 2020.

BUNDER, J. O Concreto: Sua Origem, Sua História. São Paulo, 2016. Disponível em: <https://d1wqtxts1xzle7.cloudfront.net/51155957/Concreto._Sua_origem__sua_historia.pdf?1483395609=&response-content-disposition=inline%3B+filename%3DO_CONCRETO_SUA_ORIGEM_SUA_HISTORIA.pdf&Expires=1599856171&Signature=emNyr0v2O5b-hT9pDwiXYSIywf-oV410gBHi11bQZqqoe3w5wgxCsszMq5spY2rPtSahJDOrc6pwl6q3qCq1BxIVkHKTnvxFc5PdrrMu9cEO9bsMgZvvXOtEEPcCJ03DxWblRIro8dPxhvQh3zPXWg2-XtAen13-DHdBULJwZ2YO8oOpsutbyd0bbh5~UdmVcjBCFnMwMoPx13hJbMB6kmysG5Za8FequvwU2u9i7hoWAFZR4OYqR32uM04XrKSwCcD67odcDGZFZ0VY1ChZTEp02DwRpxRkbFmF-sBKcORT~Eq-u-N3uLp0MxMulhF2blGcHnDiyaxudMBk5wDKgg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA>. Acesso em: 15 set. 2020.

FLEIG, O.P. Estudo da Torrefação Contínua de Casca de Arroz Como Pré-tratamento Para Pirólise Rápida. 2020. 49p. Dissertação (Mestrado em Engenharia Química). Universidade Federal do Rio Grande do Sul, Porto Alegre, 2020. Disponível em: <https://www.lume.ufrgs.br/handle/10183/212834>. Acesso em: 15 set. 2020.

GAO, T., L. SHEN, M. SHEN, F. CHEN, L. LIU, L. GAO. Analysis on differences of carbon dioxide emission from cement production and their major determinants, J. Cleaner Prod, 2015, p. 160–170. Disponivel em: <https://www.sciencedirect.com/science/article/pii/S0959652614012062>. Acesso em: 12 mai. 2020.

GUPTA, S., H.W. KUA. Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review, J. Mater. Civ. Eng, vol 29, 2017. Disponivel em: <https://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0001924>. Acesso em: 12 mai. 2020.

IMBABI, M.S., C. CARRIGAN, S. MCKENNA. Trends and developments in green cement and concrete technology, Int. J. Sustainable Built Environ, 2012, p. 194–216. Disponivel em: <https://www.sciencedirect.com/science/article/pii/S2212609013000071>. Acesso em: 12 mai. 2020.

KLOSS, S., et al. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties, J. Environ. Qual, 2011, p. 990–1000. Disponivel em: <https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/jeq2011.0070>. Acesso em: 12 mai. 2020.

LEAL, G. C. S. G., DE FARIAS, M. S. S., ARAÚJO, A. F. O Processo de Industrialização e Seus Impactos no Meio Ambiente Urbano. Qualitas Revista Eletrônica, Campina Grande, v.7, n.1. Ano 2008. Disponível em: <http://revista.uepb.edu.br/index.php/qualitas/article/view/128/101>. Acesso em: 12 mai. 2020.

LEHMANN, J., S. JOSEPH. Biochar for environmental Management: an introduction, in: J. Lehmann, S. Joseph (Eds.), Biochar for Environmental Management:Science and Technology, vol. 1, Sterling, Earthscan, 2009, p. 1–12. Disponível em: <https://www.biochar-international.org/wp-content/uploads/2018/04/Biochar_book_Chapter_1.pdf>. Acesso em: 12 mai. 2020.

LI, Z. Introduction to concrete, Advanced Concrete Technology, John Wiley & Sons, Inc., Hoboken, 2011, p. 1–22. Disponível em: <https://www.sciencedirect.com/book/9780750656863/advanced-concrete-technology>. Acesso em: 12 mai. 2020.

MAURY, M.B., BLUMENSCHEIN, R.N. Produção de Cimento: Impactos à Saúde e ao Meio Ambiente, Sustentabilidade em Debate, Brasília, v. 3, n. 1, p. 75-96, jan/jun 2012. Disponível em: <https://repositorio.unb.br/bitstream/10482/12110/1/ARTIGO_ProducaoCimentoImpacto.pdf>. Acesso em: 15 set. 2020.

MINANE, J.R., F. BECQUART, N.E. ABRIAK, C. DEBOFFE. Upgraded mineral sand fraction from MSWI bottom ash: an alternative solution for the substitution of natural aggregates in concrete applications, Procedia Eng, 2017, p. 1213– 1220. Disponivel em: <https://www.sciencedirect.com/science/article/pii/S1877705817317897>. Acesso em: 12 mai. 2020.

MO, K.H., U.J. ALENGARAM, M.Z. JUMAAT, S.P. YAP, S.C. LEE. Green concrete partially comprised of farming waste residues: a review, J. Cleaner Prod, 2016, p. 122–138. Disponivel em: <https://www.sciencedirect.com/science/article/pii/S0959652616000482>. Acesso em: 12 mai. 2020.

PALES, A. F., LEVI, P., VASS, T. International Energy Agency, Tracking Industry , IEA Paris, 2019. Disponível em: <https://www.iea.org/reports/cement>. Acesso em: 18 mai. 2020.

SANTOS, N. A. V. Pirólise rápida de coprodutos do processo produtivo do biodiesel: efeito das condições de pirólise e caracterização dos produtos. 2013. 162p. Dissertação (Mestrado em Agroquímica). Universidade Federal de Lavras, Lavras, 2013. Disponivel em: <http://repositorio.ufla.br/bitstream/1/737/1/DISSERTACAO_Pir%C3%B3lise%20r%C3%A1pida%20de%20coprodutos%20do%20processo....pdf>. Acesso em: 15 set. 2020.

WANG, D., X. ZHOU, Y. MENG, Z. CHEN, Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack, Constr. Build. Mater, 2017, p. 398–406. Disponivel em: <https://www.sciencedirect.com/science/article/abs/pii/S0950061817308309>. Acesso em: 12 mai. 2020.

YU, J., C. LU, C.K.Y. LEUNG, G. LI. Mechanical properties of green structural

concrete with ultrahigh-volume fly ash. Construction and Building Materials, Oxford, v. 147, p. 510-518, 30 ago. 2017. Disponivel em: <https://www.sciencedirect.com/science/article/abs/pii/S0950061817308565>. Acesso em: 12 mai. 2020.

ZHAO, C., P. WANG, L. WANG, D. LIU. Reducing railway noise with porous

soundabsorbing concrete slabs. Hindawi Publishing Corporation, Londres, 30 nov. 2014. Disponivel em: <http://downloads.hindawi.com/journals/amse/2014/206549.pdf>. Acesso em: 12 mai. 2020.

Published

2021-05-10

How to Cite

Synthesis, Description and Evaluation of Biochar Produced By Bovine Ruminal Residue From Slaughterhouse For Partial Replacement Of Concrete Cement. (2021). Colloquium Exactarum. ISSN: 2178-8332, 13(1), 38-45. https://journal.unoeste.br/index.php/ce/article/view/3959

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.