CONTROLE DE CAOS NO MODELO NEURONAL DE HINDMARSH-ROSE COM PARÂMETROS INCERTOS
Keywords:
Caos, Parâmetros Incertos, Controle ÓtimoAbstract
In bioengineering there is a great motivation in studying the Hindmarsh-Rose (HR) neuron model due to the fact that it represents well the biological neuron, making it possible to simulate several behaviors of a real neuron, including periodic, aperiodic and chaotic behaviors, for example. Based on this model, this article proposes applying a linear optimal control design to the uncertain and chaotic behavior established by changes in the parameters of the system. To do so, the mathematical system of the RH model and its chaotic behavior are presented; afterwards, the fixed parameters are replaced by uncertain ones, and the chaotic dynamics of the system is investigated. At last, the linear optimal control is proposed as a method for controlling the chaotic behavior of the model, and numerical simulations are presented to show the efficiency of this proposal.
Downloads
References
BEAR, M. F., CONNORS, B. W., PARADISO, M. A. Neurociências: desvendando o sistema nervoso. Artmed Editora, 2002.
BUTERA Jr, R. J., RINZEL, J., SMITH, J. C. Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. Journal of neurophysiol ogy, v. 82, n. 1, p. 382-397, 1999.
https://doi.org/10.1152/jn.1999.82.1.382.
CHAVARETTE, F. R. Optimal linear control to parametric uncertainties in a micro electro mechanical system. International Journal of Pure and Applied Mathematics, v. 83, n. 4, p. 539-548, 2013.
https://doi.org/10.12732/ijpam.v83i4.2.
CLOUTIER, J. R.; D'SOUZA, CHRISTOPHER N.; MRACEK, CURTIS P. Nonlinear regulation and nonlinear H∞ control via the state-dependent Riccati equation technique: Part 1, theory. In: Proceedings of the international conference on nonlinear problems in aviation and aerospace. Embry Riddle University, 1996. p. 117-131.
CVETICĆANIN, L. Dynamics of the non-ideal mechanical systems: A review. Journal of the Serbian Society for Computational Mechanics, v. 4, n. 2, p. 75-86, 2010.
DE LIMA, R. S., CHAVARETTE, F. R., ROÉFERO, L. G. P. Estudo do Comportamento Dinâmico do Modelo Neuronal de Hindmarsh-Rose. In: Colloquium Exactarum. ISSN: 2178-8332. 2019. p. 122-130.
http://journal.unoeste.br/index.php/ce/article/view/3283/2889. https://doi.org/10.5747/ce.2019.v11.n4.e301
GHANEM, R. G., SPANOS, POL D. Stochastic finite elements: a spectral approach. Courier Corporation, 2003.
HAMI, A. E., RADI, B. Uncertainty and Optimization in Structural Mechanics. John Wiley & Sons, 2013.
HINDMARSH, J. L., ROSE, R. M. A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal society of London. Series B. Biological sciences, v. 221, n. 1222, p. 87-102, 1984.
https://doi.org/10.1098/rspb.1984.0024.
HODGKIN, A. L., HUXLEY, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology}, v. 117, n. 4, p. 500-544, 1952. https://doi.org/10.1113/jphysiol.1952.sp004764.
JUN, M. et al. Control Chaos in Hindmarsh—Rose Neuron by Using Intermittent Feedback with One Variable. Chinese Physics Letters, v. 25, n. 10, p. 3582, 2008. https://doi.org/10.1088/0256-307X/25/10/017
LARA-MOLINA, F. A., ROSARIO, J. M., Dumur, D., Wenger, P. Generalized predictive control of parallel robots. In: Koz lowski, K. (Ed.), Robot Motion and Control 2011. Springer London, volume 422 de Lecture Notes in Control and Information Sciences, pages 159-169, 2012. https://doi.org/10.1007/978-1-4471-2343-9_13
LORENZ, E. N. Section of planetary sciences: The predictability of hydrodynamic flow* . Transactions of the New York Academy of Sciences, v. 25, n. 4 Series II, p. 409-432, 1963. https://doi.org/10.1111/j.2164-0947.1963.tb01464.x.
MOLLER, B., BEER, M. Fuzzy Randomness, Uncertainty in Civil Engineering and Computational Mechanics. Springer-Verlag, 2004. https://doi.org/10.1007/978-3-662-07358-2
MONTEIRO, L. H. A. Sistemas dinâmicos. Editora Livraria da Física, 2002.
MRACEK, C. P., CLONTIER, J. R., D'Sousa, Christopher, A. A new technique for nonlinear estimation. In: Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro}. IEEE, 1996. p. 338-343.
https://doi.org/10.1109/CCA.1996.558760.
PALUS, MILAN et al. Synchronization and information flow in EEGs of epileptic patients. IEEE Engineering in Medicine and Biology Magazine, v. 20, n. 5, p. 65-71, 2001. https://doi.org/10.1109/51.956821.
PEARSON, J. D. Approximation methods in optimal control I. Sub-optimal control. International Journal of Electronics, v. 13, n. 5, p. 453-469, 1962.
https://doi.org/10.1080/00207216208937454.
SHAWKY, A. M. et al. Position control of flexible manipulator using non-linear H with state-dependent Riccati equation. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, v. 221, n. 3, p. 475-486, 2007.
https://doi.org/10.1243/09596518JSCE313.
VICENTE, J. P. G., CHAVARETTE, F. R., ROÉFERO, L. G. P. Chaos Control via Mathieu-Van der Pol System and Linear Optimal Control Design with a Non-ideal Excitation and Parametric Uncertainties. Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, v. 35, p. 37-47, 2019.
http://dx.doi.org/10.23967/j.rimni.2019.08.001.
WERNELI, A., COOK, G. Suboptimal control for the nonlinear quadratic regulator problem. Automatica, v. 11, n. 1, p. 75-84, 1975. https://doi.org/10.1016/0005-1098(75)90010-2.
WOLF, A. et al. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, v. 16, n. 3, p. 285-317, 1985. https://www.sciencedirect.com/science/article/abs/pii/0167278985900119.