CROWD SIMULATION IN IMMINENT RISK SITUATIONS
Keywords:
crowd simulation; multi-agent systems; evacuationAbstract
There are many methods of simulating a crowd of people, each with its advantages and disadvantages. The increasing number of risk situations in big cities, such as fires or terrorist attacks, made it important to study the behavior of individuals in this type of situation. The purpose of this work is to develop a mathematical-computational model to simulate crowds in fire situations in order to establish relationships between different variables found in those scenarios. This work uses the instinctive concept of crowds in situations with high levels of stress to configure the interactions between people and the environment in a dynamic multiagent system, where each individual presents different cognitive and motor capacities, so that the safety of a closed environment can be diagnosed quicker than the current methods, as well as establishing relation between the fire stage, number of people and the percentage of survivors of the group, and also evaluate the possibility of applying the agent-environment interactions for the implementation of a function optimization system.
Downloads
References
BRAUN, A.; BODMANN. B. E. J.; MUSSE, S. R. Simulating virtual crowds in emergency situations. [S.l.]: ACM. 2005. p. 244-252. https://doi.org/10.1145/1101616.1101666
CLARKE, A. B.; DISNEY, R. L. Probabilidade e processos estocásticos. 1. ed.. Rio de Janeiro: Livros Técnicos e Científicos, 1979.
FERBER, J. Les Systèmes multi-agents: Vers une intelligence collective. [S.l.]: InterEditions, 1995.
FERREIRA, Y. S. Um estudo investigativo sobre a comunicação em simulações de emergência e evacuação. 2009. Dissertação (Mestrado em Computação). Universidade Federal Fluminense. Niterói.
FRANCISCO, D. O. Aplicação de Algoritmos Bio-Inspirados ao Problema de Geração Automática de Grades Horárias. Dissertação (Mestrado em Ciências). Escola de Engenharia de São Carlos. Universidade de São Paulo. São Carlos. 2013.
HELBING, D.; MOLNÁR, P. Social force model for pedestrian dynamics. Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics), 51(5):4282–4286, Mai 1995. https://doi.org/10.1103/PhysRevE.51.4282
HÜBNER, J. F.; SICHMAN, J. S. Organização de sistemas multiagentes. Anais Congresso da Sociedade Brasileira de Computação. 8(23):247–296. 2003.
HÜBNER, J.; BORDINI, R.; VIEIRA, R. Introdução ao desenvolvimento de sistemas multiagentes com Jason. 2018
MUSSE, S. R. Simulação de Multidões de Humanos Virtuais. Youtube. 3 ago. 2013. Disponível em <http://hdl.handle.net/10923/5978>. Acesso em 20 abr. 2018.
PAN, X. et al. Human and social behavior in computational modeling and analysis of egress. Automation in construction, v. 15, p. 448-461, 2006. https://doi.org/10.1016/j.autcon.2005.06.006
PELECHANO, N. et al. Crowd Simulation Incorporating Agent Psychological Models, Roles and Communication. [S.l.]: [s.n.]. 2005. p. 21-30. https://doi.org/10.21236/ADA522128
PELECHANO, N.; BADLER, N. I. Modeling Crowd and Trained Leader Behavior during Building Evacuation. IEEE Comput. Graph. Appl., v. 26, p. 80- 86, 2006. https://doi.org/10.1109/MCG.2006.133
REIS, L. P. Coordination in Multi-Agent Systems: Applications in University Management and Robotic Soccer. FEUP. [S.l.]. 2003.
REYNOLDS, C. W. Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer Graphics, v. 21, p. 25-34, 1987. https://doi.org/10.1145/37402.37406
SABOIA, P. C. Simulação de Multidões com Agentes Brownianos e Modelo de Forças Sociais Modificado. 2010. Dissertação de mestrado. Instituto de Computação – UNICAMP, Campinas.
SILVA, L. A. M. Estudo de Desenvolvimento de Sistemas Multiagentes usando Jade: Java Agent Development Framework. Trabalho de Conclusão de Curso (Graduação em Ciências da Computação) – Centro Tecnológico. Universidade Federal de Pernambuco, Pernambuco. 2003.
SMELSER, N. J. Theory of Collective Behavior. The Free Press. New York. 1963. https://doi.org/10.1037/14412-000
TAKAHASHI, T.; ICHINOSE, K. Crowd control and evacuation guidance based on simulations. 2017 IEEE International Conference on Big Data (Big Data). Boston. 2017. https://doi.org/10.1109/BigData.2017.8258376
WOLFRAM, S. Statistical mechanics of cellular automata. Revisions of Modern Physics, 55(3):601–644. jul. 1983. https://doi.org/10.1103/RevModPhys.55.601
WOOLDRIDGE, M.; JENNINGS, N. R. Agent theories, architectures, and languages: a survey. [S.l.]: Springer-Verlag New York, Inc. 1995. p. 1-39. https://doi.org/10.1007/3-540-58855-8_1
XU, M. et al. Crowd Simulation and Its Applications: Recent Advances. Journal of Computer Science and Technology. 29(5). p. 799-811. Set. 2014. https://doi.org/10.1007/s11390-014-1469-y
ZHENG, X.; ZHONG, T.; LIU, M. Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment. v. 44, p. 437-445, 2009. https://doi.org/10.1016/j.buildenv.2008.04.002