Cotton plant (Gossipyum spp.) development and yeld are influenced by soil compaction: A review

Authors

  • Murilo Fuentes Pelloso Universidade Estadual de Maringá
  • Camila Pereira Cagna State University of Maringá

Keywords:

Aeration, Cotton, Gossypium hirsutum L., Hydrical Stress, Soil Physical Properties

Abstract

Intensive exploitation of cultivated soils has resulted in physical, chemical, and biological degradation as the demand for agricultural commodities, including cotton, has grown. Physical characteristics of the soil are those that are directly linked to the supply of water, nutrients, and air, as well as the establishment of roots for good agricultural crop development and yield. In this context, soil compaction is one of the most serious environmental issues caused by conventional agriculture. Cotton plant, which is highly sensitive to water stress and lack of soil aeration, is directly impacted by this type of degradation, which results in reduced root system development, affecting water and nutrient absorption, and causing damage to overall plant and crop yield. Soil compaction has been shown to reduce cotton yield in several studies; for example, the majority of the southeastern cotton-growing regions in the United States, which make up the majority of the country's 'cotton belt,' have compacted soils and 66 % of cotton farmers in Australia were affected by soil compaction, while other research shows a 27 % yield loss for the crop in these conditions. On the other hand, most studies carried out in systems that aim to reduce soil compaction, have shown that improvements in soil physical properties related to decompaction result in an increase in cotton plant yield.

Downloads

Download data is not yet available.

References

ABRAPA - Associação brasileira dos produtores de algodão. Algodão no Brasil. 2021. Disponível em: <https://www.abrapa.com.br/Paginas/dados/algodao-no-brasil.aspx>. Accessed in: 22/05/2022.

AIME R.S.; RHODES G., JONES M.; CAMPBELL B.T.; NARAYANAN S. Evaluation of root traits and water use efficiency of different cotton genotypes in the presence or absence of a soil-hardpan. The Crop Journal, v.9, n.4, p.945-953, 2021. https://doi.org/10.1016/j.cj.2020.12.001

AL-SHATIB M.M.; BENNET J.M.; CHEN G.; JENSEN T.A. Impact of cotton picker traffic on vertosol soil and yield in individual rows. Crop and Pasture Science, v.72, n.7, p.514-527 https://doi.org/10.1071/CP20360

ANGHINONI, G.; TORMENA, C.A.; LAL, R.; ZANCANARO, L.; KAPPES, C. Enhancing soil physical quality and cotton yields through diversification of agricultural practices in central Brazil. Land Degradation and Development, v.30, p.788-798, 2019. https://doi.org/10.1002/ldr.3267

ANGHINONI, G.; ANGHINONI, F.B.G.; TORMENA, C.A.; BRACCINI, A.L.; MENDES, I.C.; ZANCANARO, L.; LAL, R. Conservation agriculture strengthen sustainability of Brazilian grain production and food security. Land Use Policy, v.108, 2021. https://doi.org/10.1016/j.landusepol.2021.105591

BAUMHARDT, R.L.; SCHWARTS, R.; HOWELL, T.; EVETT, S.R.; COLAIZZI, P. Residue management effects on water use and yield of déficit irrigated cotton. Agronomy Journal, v.105, p.1026-1034, 2013. https://doi.org/10.2134/agronj2012.0361

BLANCO-CANQUI, H.; MIKHA, M.M.; PRESLEY, D.R.; CLAASSEN, M.M. Addition of cover crops enhances no-till potential for improving soil physical properties. Soil Science Society of America Journal, v.75, p.1471–1482, 2011. https://doi.org/10.2136/sssaj2010.0430

BLANCO-CANQUI, H.; RUIS, S.J. No-tillage and soil physical environment. Geoderma, v.326, p.164-200, 2018. https://doi.org/10.1016/j.geoderma.2018.03.011

BUSSCHER, W.J.; BAUER, P.J. Soil strength, cotton root growth and lint yield in a southeastern USA coastal loamy sand. Soil and Tillage Research, v.74, n.2, p.151–159, 2003. https://doi.org/10.1016/j.still. 2003.06.002

CCA. Qualitative report on the 2019-20 cotton season: a survey of consultants. Crops Consultants Australia, 2020.

CHIAVEGATO, E.J.; SALVATIERRA, D.K.; GOTTARDO, L.C.B. Algodão. In: MONTEIRO, J.E.B.A. Agrometeorologia dos Cultivos: o fator meteorológico na produção agrícola. Brasilia: INMET, 2009. p.33-49.

CONSTABLE, G.A.; BANGE, M.P. The yield potential of cotton (Gossypium hirsutum L.). Field Crops Research, v.182, p.98-106, 2015. https://doi.org/10.1016/j.fcr.2015.07.017

CORDEIRO, C.F.S.; RODRIGUES, D.R.; ECHER, F.R. Cover crops and controlled-release urea decrease need for mineral nitrogen fertilizer for cotton in sandy soil. Field Crops Reserch, v.276, p.1-12, 2022. https://doi.org/10.1016/j.fcr.2021.108387

DANIELLS, I.G. Degradation and restoration of soil structure in a cracking grey clay used for cotton production. Australian Journal of Soil Research, v.27, n.2, p.455-469, 1989.

DORAN, J.W.; PARKIN, T.B. Defining soil quality for a sustainable environment. Soil Science Socity of America, v.esp, p.3-21, 1994.

DELAUNE, P.B.; MUBVUMBA, P.; LEWIS, K.L.; KEELING, J.W. Rye cover crop impacts soil properties in a long-term cotton system. Soil Science Society of America Journal, v.83, p.1451-1458, 2019. https://doi.org/10.2136/sssaj2019.03.0069

ECHER, F.R.; PERES, V.J.S.; ROSOLEM. Potassium application to the cover crop prior to cotton planting as a fertilization strategy in sandy soil. Scientific Reports, v.10, p.1-10, 2020. https://doi.org/10.1038/s41598-020-77354-x

FALKOSKI FILHO J.; BATISTA I.; ROSOLEM C.C. Sensitivity of cotton cultivars to soil compaction. Semina: Ciências Agrárias, v.34, n.6, p.93-98, 2013. https://doi.org/10.5433/1679-0359.2013v34n6Supl1p364

FERREIRA, C.J.B.; TORMENA, C.A.; SEVERIANO, E.C.; ZOTARELLI, L.; BETIOLI JÚNIOR, E. Soil compaction influences soil physical quality and soybean yield under long-term no-tillage. Archives of Agronomy and Soil Science, v.67, p.383-396, 2020. https://doi.org/10.1080/03650340.2020.1733535

KULKARNI, S.S.; BAJWA, S.G.; HUITINK, G. Investigation of the effects of soil compaction in cotton. Transactions of the ASABE. American Society of Agricultural and Biological Engineers, v.53, n.3, p.667-674, 2010. https://doi.org/10.13031/2013.30058

GAO, W.; HODGKINSON, L.; JIN, K.; WATTS, C.W.; ASHTON, R.W.; SHEN, J.; REN, T.; DODD, I.C.; BINLEY, A.L.; PHILLIPS, A.L.; HEDDEN, P.; HAWKESFORD, M.J.; WHALLET, W.R. Deep roots and soil structure. Plant, Cell and Environment, v.39, n.8, p.1662-1668, 2015. https://doi.org/10.1111/pce.12684

GHARAKHANI H.; THOMASSON, J.A.; LU Y. An end-effector for robotic cotton harvesting. Smart Agricultural Technology, v.2, p.1-11, 2022. https://doi.org/10.1016/j.atech.2022.100043

GWATHMEY, C.O.; BANGE, M.P.; BRODRICK, R. Cotton crop maturity: A compendium of measures and predictors. Field Crops Research, v.191, p.41-53, 2016. https://doi.org/10.1016/j.fcr.2016.01.002

HAMZA, M.A.; ANDERSON, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research, v.82, p.121-145, 2005. https://doi.org/10.1016/j.still.2004.08.009

HEARN, A.B. Response of cotton to water and nitrogen in a tropical environment. I. Frequency of watering and method of application of nitrogen. Journal Agricultural Science, v.84, p.407–417, 1975. https://doi.org/10.1017/S0021859600052618

HULUGALLE, N.R.; ENTWISTLE, P.C.; LOBRY DE BRUYN, L.A. Residual effects of tillage and crop rotation on soil properties, soil invertebrate numbers and nutrient in an irrigated Vertisol sown to cotton. Applied Soil Ecology, v.7, p.11-30, 1997. https://doi.org/10.1016/S0929-1393(97)00027-9

HULUGALLE, N.R.; SCOTT, F. A review of the changes in soil quality and profitability accomplished by sowing rotation crops after cotton in Australian Vertosols from 1970 to 2006. Australian Journal of Soil Research, v.46, p.173–190, 2008. https://doi.org/10.1071/SR07077

JABRO, J.D.; ALLEN B.L.; RAND, T.; DANGI, S.R.; CAMPBELL, J.W. Effect of Previous Crop Roots on Soil Compaction in 2 Yr Rotations under a No-Tillage System. Land, v.10, n.202, p.1-10, 2021. https://doi.org/10.3390/land10020202

JAMALI, H.; NACHIMUTHU, G.; PALMER, B.; HODGSON, D.; HUNDT, A.; NUNN, C.; BRAUNACK, M. Soil compaction in a new light: know the cost of doing nothing – a cotton case study. Soil and Tillage Research, v.213, e.105158, 2021. https://doi.org/10.1016/j.still.2021.105158

LIPIEC, J.; HORN, R.; PIETRUSIEWICZ, J.; SICZEK. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil and Tillage Research, v.121, p.74-84, 2012. https://doi.org/10.1016/j.still.2012.01.013

MARTÍNEZ, I.; CERVET, A.; WEISSKOPF, P.; STURNY, W.G.; REK, J.; KELLER, T. Two decades of no-till in the Oberacker long-term field experiment: part II. Soil porosity and gas transport parameters. Soil Tillage Research, v.163, p.130-140, 2016. https://doi.org/10.1016/j.still.2016.05.020

MCGARRY, D. Soil compaction and cotton growth on a vertisol. Soil Research, v.28, p.869-877, 1990. https://doi.org/10.1071/SR9900869c

MCKENZIE, B.M.; TISDALL, J.M.; VANCE, W.H. Soil physical quality. In: GLINSKI, J.; HORABIK, J.; LIPIEC, J. (eds). Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series, 2011.

NIU, J.; ZHANG, S.; LIU, S.; MA, H.; CHEN, J.; SHEN, Q.; GE, C.; ZHANG, X.; PANG, C.; ZHAO, X. The compensation effects of physiology and yield in cotton after drought stress. Journal of Plant Physiology, v.224-225, p.30-48, 2018. https://doi.org/10.1016/j.jplph.2018.03.001

NOURI, A.; LEE, J.; YIN, X.; TYLER, D.D.; SAXTON, A.M. Thirty-four years of no-tillage and cover crops improve soil quality and increase cotton yield in Alfisols, Southeastern USA. Geoderma, v.337, p.998-1008, 2019. https://doi.org/10.1016/j.geoderma.2018.10.016

NOURI, A.; YOUSSEF, F.; BASARAN, M.; LEE, J.; SAXTON, A.M.; ERPUL, G. The Effect of Fallow Tillage Management on Aeolian Soil Losses in Semi-arid Central Anatolia, Turkey. Agrosystems, Geosciences and Environment, v.1, p.1-13, 2018. https://doi.org/10.2134/age2018.07.0019

OJO, A.O.; ALIKU, O.; ALADELE, S.E.; OSHUNSANYA, S.O.; OLUBIYI, M.R.; OLOSUNDE, A.A.; AYANTAYO-OJO, V.I.; ALOWONLE, A.A. Impacts of land-use types on soil physical quality: a case study of the national centre for genetic resources and biotechnology (NACGRAB), Nigeria. Environmental Challenges, v.7, e.100510, 2022. https://doi.org/10.1016/j.envc.2022.100510

RAMOS, P.N.F.; FERREIRA, P.A.; SILVEIRA, O.R.; MAIA, J.C.S. Influence of soil physical attributes on the production and quality of the cotton in seed and fiber. Research, Society and Development, v.10, n.14, c.328101421970, 2021. https://doi.org/10.33448/rsd-v10i14.21970

REYNOLDS, W.D.; BOWMAN, B.T.; DRURY, C.F.; TAN, C.S.; LU, X. Indicators of good soil physical quality: density and storage parameters. Geoderma, v.110, p.131-146, 2002. https://doi.org/10.1016/S0016-7061(02)00228-8

ROSOLEM, C. Ecofisiologia e manejo da cultura do algodoeiro. Potafos, n.95, p.1-9, 2001.

SANTOS, A.; MATOS, E.S.; FREDDI, O.S.; GALBIERI, R.; LAL, R. Cotton production systems in the Brazilian Cerrado: The impacto of soil attributes on field-scale yield. European Journal of Agronomy, v.118, 2020. https://doi.org/10.1016/j.eja.2020.126090

SHAHEB, M.R.; VENKATESH, R.; SHEARER, S.A. A Review on the Efect of Soil Compaction and its Management for Sustainable Crop Production. Journal of Biosystems Engineering, v.46, p.417–439, 2021. https://doi.org/10.1007/s42853-021-00117-7

SHAHBANDEH, M. Global cotton production 2020/2021, by country. Statista, 2021. Disponível em: < https://www.statista.com/statistics/263055/cotton-production-worldwide-by-top-countries/>. Accessed in: 20/04/2022.

SCHWAB, E.B.; REEVES, D.W.; BURMESTER, C.H.; RAPER, R.L. Conservation tillage systems for cotton in the Tennessee Valley. Soil Science Society of America Journal, v.66, n.2, p.569–577, 2002. https://doi.org/10.2136/sssaj2002.5690

SILVA, G.J.; MAIA, J.C.S.; BIANCHINI, A. Crescimento de parte aérea de plantas cultivadas em vaso, submetidas à irrigação subsuperficial e a diferentes graus de compactação de um Latossolo vermelho-escuro distrófico. Revista Brasileira de Ciência do Solo, v.30, n.1, p.31-40, 2006. https://doi.org/10.1590/S0100-06832006000100004

UL-ALLAH, S.; REHMAN, A.; HUSSAIN, M.; FAROOQ, M. Fiber yield and quality in cotton under drought: Effects and management. Agricultural Water Management, v.255, p.1-9 2021. https://doi.org/10.1016/j.agwat.2021.106994

VOORHEES, W.; NELSON, W.W.; RANDALL, G. Extent and persistence of subsoil compaction caused by heavy axle loads. Soil Science Society of America Journal, v.50, p.428-433, 1986. https://doi.org/10.2136/sssaj1986.03615995005000020035x

WANG, R.; JI, S.; ZHANG, P.; MENG, Y.; WANG, Y.; CHEN, B.; ZHOU, Z. Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science, v.56, p.1265-1276, 2016. https://doi.org/10.2135/cropsci2015.08.0477

Published

2022-11-16

How to Cite

Cotton plant (Gossipyum spp.) development and yeld are influenced by soil compaction: A review. (2022). Colloquium Agrariae. ISSN: 1809-8215, 18(3), 51-59. https://journal.unoeste.br/index.php/ca/article/view/4410

Most read articles by the same author(s)