Nutrient suppression in passion fruit species: an approach to leaf development and morphology
Keywords:
Passiflora gibertii, plant morphology, plant nutrition, Passiflora edulisAbstract
The production of passion fruit in commercial areas requires a good correction of nutrients in the soil, however, with nutritional restrictions it can cause symptoms of deficiency expressed mainly in the leaves and stems, which may appear spots, reduced growth, changes in the architecture of these organs mainly in the its size and shape. This work aimed to know the effects caused by the suppression of nutrients in passion fruit species with an approach on their development and leaf morphology. The experimental design was completely randomized (DIC) in a 2x6 factorial scheme where the first factor was composed of two passion fruit species: P. gibertii and P. edulis, interacting with the availability of nutrients, that is, a control group with the supply of all nutrients, with nitrogen suppression (N); phosphorus (P); potassium (K); magnesium (Mg) and iron (Fe), totaling 12 treatments with four replications totaling 48 plots or plastic vessels per experiment. The species P. edulis showed better responses to the variables of development and leaf morphology. The species P. gibertii is more susceptible to nutrient deficiency and showed changes in the color and shape of its leaves with the restriction of nutrients. The nutrients Fe and Mg caused greater restrictions on the development and leaf morphology of passion fruit species. It is necessary to carry out a new study with the species P. gibertii regarding the appropriate concentrations of N, P and K provided in planting and cover, as this species is used as a rootstock in commercial areas.
Downloads
References
Almeida, E.V., Natale, W., Prado, R.M., Barbosa, J.C. 2006. Nitrogen and potassic fertilization on development of passion fruit seedlings. Ciência Rural. 36 (4), 1138-1142. In Portuguese http://dx.doi.org/10.1590/S0103-84782006000400015
Alscher, R.G., Erturk, N., Heath, L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany. 53, 1331-1341. https://doi.org/10.1093/jexbot/53.372.1331
Amthor, J.S., Bar-Even, A., Hanson, A.D., Millar, A.H., Stitt, M., Sweetlove, S., Tyerman, D. 2019. Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss. The Plant Cell. 31 (2), 297-314. http://dx.doi.org/10.1105/tpc.18.00743
Banzatto, D.A., Kronka. S.N. 2013. Experimentação Agrícola. 4.ed. Funep, 237p.
Bellon, G., Faleiro, F.G., Junqueira, K.P., Junqueira, N.T.V., Santos, E.C., Braga, M.F., Guimarães, C.T. 2007. Genetic variability of wild and commercial passion fruit (Passiflora edulis Sims.) accessions using RAPD markers. Revista Brasileira de Fruticultura. 29 (1), 124-127. In Portuguese https://doi.org/10.1590/S0100-29452007000100027
Castro, E.M., Pereira, F.J., Paiva, R. 2009. Histologia vegetal: estrutura e função de órgãos vegetativos. Lavras: Universidade Federal de Lavras, 234 p.
Embrapa - Empresa Brasileira de Pesquisa Agropecuária. 2005. Maracujá: germoplasma e melhoramento genético. Embrapa Cerrados, 70p.
Fleischer, K., Rammig, A., Kauwe, M.G., Walker, AP., Domingues, T.F., Fuchslueger, L., Garcia, S., Goll, D.S., Grandis, A., Jiang, M., Haverd, V., Hofhansl, F., Holm, J.A., Kruijt, B., Leung, F., Medlyn, B.E., Mercado, L.M., Norby, R.J., Pak, B., Randow, C., Quesada, C.A., Schaap, K.J., Valverde-Barrantes, O.J., Wang, Y., Yang, Y., Zaehle, S., Qing Zhu, Q., Lapola, D.M. 2019. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience. 12 736-741. https://doi.org/10.1038/s41561-019-0404-9
Furlani P.R. 1998. Instruções para o cultivo de hortaliças de folhas pela técnica de Hidroponia NFT. Campinas, Instituto Agronômico, 30p.
Guo, J., Jia, Y., Chen, H., Zhang, L., Yang, J., Zhang, J., Hu, X., Ye, X., Li, Y., Zhou, Y. 2019. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific Reports. 9, 1-12. https://doi.org/10.1038/s41598-018-37838-3
Ham, B., Chen, J., Yan, Y., Lucas. W.J. 2018. Insights into plant phosphate sensing and signaling. Current Opinion in Biotechnology. 49, 1-9. http://dx.doi.org/10.1016/j.copbio.2017.07.005
Kobayashi, T., Nozoye, T., Nishizawa, N.K. 2019. Iron transport and its regulation in plants. Free Radical Biology and Medicine. 133, 11-20. https://doi.org/10.1016/j.freeradbiomed.2018.10.439
Koch, M., Busse, M., Naumann, M., Jákli, B., Smit, I., Cakmak, I., Hermans, C., Pawelzik, E. 2019. Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiologia Plantarum. 166 (4), 921-935. http://dx.doi.org/10.1111/ppl.12846
Kraus, J.E., Arduim. M. 1997. Manual básico de métodos em morfologia vegetal. Seropédica: EDUR, 221p.
Mohotti, A.J., Lawlor. D.W.2002. Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. Journal Experimental Botany. 53 (367), 313–32. http://dx.doi.org/10.1093/jexbot/53.367.313
Pacheco, A.L.V., Pagliarini, M.F., Freitas, G.B., Vieira, G. 2018. Yellow passion fruit postharvest conservation and quality according to organic and mineral fertilizer. Revista Brasileira de Fruticultura. 40 (5), 1-8. http://dx.doi.org/10.1590/0100-29452018001
Prado, R.M., Vale, D.W., Romualdo. L.M. 2005. Phosphorus application to the nutritional status and dry matter production of passion fruit cuttings. Acta Scientiarum Agronomy. 27 (3), 493-498. In Portuguese https://doi.org/10.4025/actasciagron.v27i3.1461
Pranckietienė, I., Dromantienė, R., Smalstienė, V., Jodaugienė, D., Vagusevičienė, I., Paulauskienė, A., Marks, M. 2020. Effect of liquid amide nitrogen fertilizer with magnesium and sulphur on spring wheat chlorophyll content, accumulation of nitrogen and yield. Journal of Elementology. 25 (1), 139-150. http://dx.doi.org/10.5601/jelem.2019.24.2.1742
Qin, L., Walk, T.C., Han, P., Chen, L., Zhang, S., Li, Y., Hu, X., Xie, L., Yang, Y., Liu, J., Lu, X., Yu, C., Tian, J., Shaff, J.E., Kochian, L.V., Liao, X., Liao. H. 2019. Adaption of roots to nitrogen deficiency revealed by 3D quantification and proteomic analysis. Plant Physiology. 179 (1), 329-347. http://dx.doi.org/10.1104/pp.18.00716
R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/
Reis, A.R., Barcelos, J.P.Q., Osório, C.R.W., Santos, E.F., Lisboa, L.A.M., Santini, J.M.K., Santos, M.J.D., Furlani Junior, E., Campos, M., Figueiredo, P.A.M., Lavres, J., Gratão, P.L. 2017. A glimpse into the physiological, biochemical and nutritional status of soybean plants under Ni-stress conditions. Environmental and Experimental Botany. 144, 76-87. http://dx.doi.org/10.1016/j.envexpbot.2017.10.006
Samborska, I.A., Kalaji, H.M., Sieczko, L., Goltsev, V., Borucki, W., Jajoo, A. 2018. Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency. Functional Plant Biology. 45 (6), 668-680. http://dx.doi.org/10.1071/fp17241
Santos, G.P., Cavalcante, L.F., Nascimento, J.AM., Lima Neto, A.J., Medeiros, S.A.S., Cavalcante, I.H.L. 2018. Nutritional status of yellow passion fruit fertilized with phosphorus sources and doses. Journal of Soil Science and Plant Nutrition. 18 (2), 388-402. http://dx.doi.org/10.4067/s0718-95162018005001204
Schorsch, M., Kramer, M., Goss, T., Eisenhut, M., Robinson, N., Osman, D., Wilde, A., Sadaf, S., Brückler, H., Walder, L., Scheibe, R., Hase, T., Hanke, G.T. 2018. A unique ferredoxin acts as a player in the low-iron response of photosynthetic organisms. Proceedings of the National Academy of Sciences. 115 (51), 12111-12120. http://dx.doi.org/10.1073/pnas.1810379115
Schuller, J.M., Birrell, J.A., Tanaka, H., Konuma, T., Wulfhorst, H., Cox, N., Schuller, S.K., Thiemann, J., Lubitz, W., Sétif, P., Ikegami, T., Engel, B.D., Kurisu, G., Nowaczyk, M.M. 2019. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science. 363 (6424), 257-260. http://dx.doi.org/10.1126/science.aau3613
Shaul. O. 2002. Magnesium transport and function in plants: the tip of the iceberg. Biometals. 15, 307–321. https://doi.org/10.1023/A:1016091118585
Shen, C., Shi, X., Xie, C., Li, Y., Yang, H., Mei, X., Xu,Y., Dong, C. 2019. The change in microstructure of petioles and peduncles and transporter gene expression by potassium influences the distribution of nutrients and sugars in pear leaves and fruit. Journal of Plant Physiology. 232, 320-333. https://doi.org/10.1016/j.jplph.2018.11.025
Srivastava, A.K., A. Shankar, A., Chandran, A.K.N., Sharma, M., Jung, K., Suprasanna, P., Pandey. G.K. 2020. Emerging concepts of potassium homeostasis in plants. Journal of Experimental Botany. 71 (2), 608–619. https://doi.org/10.1093/jxb/erz458
Stewart, J.J., Polutchko, S.K., Adams, W.W., Cohu, C.M., Wenzl, C.A., Demmig-Adams, B. 2017. Light, temperature and tocopherol status influence foliar vascular anatomy and leaf function in Arabidopsis thaliana. Physiologia Plantarum. 160 (1), 98-110. http://dx.doi.org/10.1111/ppl.12543
Taiz, L., Zeiger. E. 2013. Fisiologia vegetal. 5. ed. Porto Alegre: Artmed, 918p.
Wang, F., Deng, M., Xu, J., Zhu, X., Mao, C. 2018. Molecular mechanisms of phosphate transport and signaling in higher plants. Seminars in Cell & Developmental Biology. 74, 114-122. http://dx.doi.org/10.1016/j.semcdb.2017.06.013
Wang, Y., Gong, Z., Friml, J., Zhang. J. 2019. Nitrate modulates the differentiation of root distal stem cells. Plant Physiology. 180 (1), 22-25. http://dx.doi.org/10.1104/pp.18.01305
Woldemariam, S.H., Lal, S., Zelelew, D.Z., Solomon, M.T. 2018. Effect of potassium levels on productivity and fruit quality of tomato (Lycopersicon esculentum L.). Journal of Agricultural Studies. 6 (1), 102-115. http://dx.doi.org/10.5296/jas.v6i1.12262
Zhang, X., Wu, H., Chen, L., Wang, N., Wei, C., Wan, X. 2019. Mesophyll cells’ ability to maintain potassium is correlated with drought tolerance in tea (Camellia sinensis). Plant Physiology and Biochemistry. 136, 196-203. https://doi.org/10.1016/j.plaphy.2019.01.020
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Colloquium Agrariae. ISSN: 1809-8215
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.