• Lucas Aparecido Manzani Lisboa Universidade Estadual Paulista "Júlio de Mesquita Filho"
  • José Carlos Cavichioli Universidade Estadual Paulista - UNESP
  • Rodrigo Vitorino APTA-Adamantina
  • Paulo Alexandre Monteiro de Figueiredo Universidade Estadual Paulista - UNESP
  • Ronaldo da Silva Viana Universidade Estadual Paulista - UNESP


Passiflora gibertii, plant morphology, plant nutrition, Passiflora edulis


The production of passion fruit in commercial areas requires a good correction of nutrients in the soil, however, with nutritional restrictions it can cause symptoms of deficiency expressed mainly in the leaves and stems, which may appear spots, reduced growth, changes in the architecture of these organs mainly in the its size and shape. This work aimed to know the effects caused by the suppression of nutrients in passion fruit species with an approach on their development and leaf morphology. The experimental design was completely randomized (DIC) in a 2x6 factorial scheme where the first factor was composed of two passion fruit species: P. gibertii and P. edulis, interacting with the availability of nutrients, that is, a control group with the supply of all nutrients, with nitrogen suppression (N); phosphorus (P); potassium (K); magnesium (Mg) and iron (Fe), totaling 12 treatments with four replications totaling 48 plots or plastic vessels per experiment. The species P. edulis showed better responses to the variables of development and leaf morphology. The species P. gibertii is more susceptible to nutrient deficiency and showed changes in the color and shape of its leaves with the restriction of nutrients. The nutrients Fe and Mg caused greater restrictions on the development and leaf morphology of passion fruit species. It is necessary to carry out a new study with the species P. gibertii regarding the appropriate concentrations of N, P and K provided in planting and cover, as this species is used as a rootstock in commercial areas.


Não há dados estatísticos.


Almeida, E.V., Natale, W., Prado, R.M., Barbosa, J.C. 2006. Nitrogen and potassic fertilization on development of passion fruit seedlings. Ciência Rural. 36 (4), 1138-1142. In Portuguese

Alscher, R.G., Erturk, N., Heath, L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany. 53, 1331-1341.

Amthor, J.S., Bar-Even, A., Hanson, A.D., Millar, A.H., Stitt, M., Sweetlove, S., Tyerman, D. 2019. Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss. The Plant Cell. 31 (2), 297-314.

Banzatto, D.A., Kronka. S.N. 2013. Experimentação Agrícola. 4.ed. Funep, 237p.

Bellon, G., Faleiro, F.G., Junqueira, K.P., Junqueira, N.T.V., Santos, E.C., Braga, M.F., Guimarães, C.T. 2007. Genetic variability of wild and commercial passion fruit (Passiflora edulis Sims.) accessions using RAPD markers. Revista Brasileira de Fruticultura. 29 (1), 124-127. In Portuguese

Castro, E.M., Pereira, F.J., Paiva, R. 2009. Histologia vegetal: estrutura e função de órgãos vegetativos. Lavras: Universidade Federal de Lavras, 234 p.

Embrapa - Empresa Brasileira de Pesquisa Agropecuária. 2005. Maracujá: germoplasma e melhoramento genético. Embrapa Cerrados, 70p.

Fleischer, K., Rammig, A., Kauwe, M.G., Walker, AP., Domingues, T.F., Fuchslueger, L., Garcia, S., Goll, D.S., Grandis, A., Jiang, M., Haverd, V., Hofhansl, F., Holm, J.A., Kruijt, B., Leung, F., Medlyn, B.E., Mercado, L.M., Norby, R.J., Pak, B., Randow, C., Quesada, C.A., Schaap, K.J., Valverde-Barrantes, O.J., Wang, Y., Yang, Y., Zaehle, S., Qing Zhu, Q., Lapola, D.M. 2019. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience. 12 736-741.

Furlani P.R. 1998. Instruções para o cultivo de hortaliças de folhas pela técnica de Hidroponia NFT. Campinas, Instituto Agronômico, 30p.

Guo, J., Jia, Y., Chen, H., Zhang, L., Yang, J., Zhang, J., Hu, X., Ye, X., Li, Y., Zhou, Y. 2019. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific Reports. 9, 1-12.

Ham, B., Chen, J., Yan, Y., Lucas. W.J. 2018. Insights into plant phosphate sensing and signaling. Current Opinion in Biotechnology. 49, 1-9.

Kobayashi, T., Nozoye, T., Nishizawa, N.K. 2019. Iron transport and its regulation in plants. Free Radical Biology and Medicine. 133, 11-20.

Koch, M., Busse, M., Naumann, M., Jákli, B., Smit, I., Cakmak, I., Hermans, C., Pawelzik, E. 2019. Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiologia Plantarum. 166 (4), 921-935.

Kraus, J.E., Arduim. M. 1997. Manual básico de métodos em morfologia vegetal. Seropédica: EDUR, 221p.

Mohotti, A.J., Lawlor. D.W.2002. Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. Journal Experimental Botany. 53 (367), 313–32.

Pacheco, A.L.V., Pagliarini, M.F., Freitas, G.B., Vieira, G. 2018. Yellow passion fruit postharvest conservation and quality according to organic and mineral fertilizer. Revista Brasileira de Fruticultura. 40 (5), 1-8.

Prado, R.M., Vale, D.W., Romualdo. L.M. 2005. Phosphorus application to the nutritional status and dry matter production of passion fruit cuttings. Acta Scientiarum Agronomy. 27 (3), 493-498. In Portuguese

Pranckietienė, I., Dromantienė, R., Smalstienė, V., Jodaugienė, D., Vagusevičienė, I., Paulauskienė, A., Marks, M. 2020. Effect of liquid amide nitrogen fertilizer with magnesium and sulphur on spring wheat chlorophyll content, accumulation of nitrogen and yield. Journal of Elementology. 25 (1), 139-150.

Qin, L., Walk, T.C., Han, P., Chen, L., Zhang, S., Li, Y., Hu, X., Xie, L., Yang, Y., Liu, J., Lu, X., Yu, C., Tian, J., Shaff, J.E., Kochian, L.V., Liao, X., Liao. H. 2019. Adaption of roots to nitrogen deficiency revealed by 3D quantification and proteomic analysis. Plant Physiology. 179 (1), 329-347.

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:

Reis, A.R., Barcelos, J.P.Q., Osório, C.R.W., Santos, E.F., Lisboa, L.A.M., Santini, J.M.K., Santos, M.J.D., Furlani Junior, E., Campos, M., Figueiredo, P.A.M., Lavres, J., Gratão, P.L. 2017. A glimpse into the physiological, biochemical and nutritional status of soybean plants under Ni-stress conditions. Environmental and Experimental Botany. 144, 76-87.

Samborska, I.A., Kalaji, H.M., Sieczko, L., Goltsev, V., Borucki, W., Jajoo, A. 2018. Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency. Functional Plant Biology. 45 (6), 668-680.

Santos, G.P., Cavalcante, L.F., Nascimento, J.AM., Lima Neto, A.J., Medeiros, S.A.S., Cavalcante, I.H.L. 2018. Nutritional status of yellow passion fruit fertilized with phosphorus sources and doses. Journal of Soil Science and Plant Nutrition. 18 (2), 388-402.

Schorsch, M., Kramer, M., Goss, T., Eisenhut, M., Robinson, N., Osman, D., Wilde, A., Sadaf, S., Brückler, H., Walder, L., Scheibe, R., Hase, T., Hanke, G.T. 2018. A unique ferredoxin acts as a player in the low-iron response of photosynthetic organisms. Proceedings of the National Academy of Sciences. 115 (51), 12111-12120.

Schuller, J.M., Birrell, J.A., Tanaka, H., Konuma, T., Wulfhorst, H., Cox, N., Schuller, S.K., Thiemann, J., Lubitz, W., Sétif, P., Ikegami, T., Engel, B.D., Kurisu, G., Nowaczyk, M.M. 2019. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science. 363 (6424), 257-260.

Shaul. O. 2002. Magnesium transport and function in plants: the tip of the iceberg. Biometals. 15, 307–321.

Shen, C., Shi, X., Xie, C., Li, Y., Yang, H., Mei, X., Xu,Y., Dong, C. 2019. The change in microstructure of petioles and peduncles and transporter gene expression by potassium influences the distribution of nutrients and sugars in pear leaves and fruit. Journal of Plant Physiology. 232, 320-333.

Srivastava, A.K., A. Shankar, A., Chandran, A.K.N., Sharma, M., Jung, K., Suprasanna, P., Pandey. G.K. 2020. Emerging concepts of potassium homeostasis in plants. Journal of Experimental Botany. 71 (2), 608–619.

Stewart, J.J., Polutchko, S.K., Adams, W.W., Cohu, C.M., Wenzl, C.A., Demmig-Adams, B. 2017. Light, temperature and tocopherol status influence foliar vascular anatomy and leaf function in Arabidopsis thaliana. Physiologia Plantarum. 160 (1), 98-110.

Taiz, L., Zeiger. E. 2013. Fisiologia vegetal. 5. ed. Porto Alegre: Artmed, 918p.

Wang, F., Deng, M., Xu, J., Zhu, X., Mao, C. 2018. Molecular mechanisms of phosphate transport and signaling in higher plants. Seminars in Cell & Developmental Biology. 74, 114-122.

Wang, Y., Gong, Z., Friml, J., Zhang. J. 2019. Nitrate modulates the differentiation of root distal stem cells. Plant Physiology. 180 (1), 22-25.

Woldemariam, S.H., Lal, S., Zelelew, D.Z., Solomon, M.T. 2018. Effect of potassium levels on productivity and fruit quality of tomato (Lycopersicon esculentum L.). Journal of Agricultural Studies. 6 (1), 102-115.

Zhang, X., Wu, H., Chen, L., Wang, N., Wei, C., Wan, X. 2019. Mesophyll cells’ ability to maintain potassium is correlated with drought tolerance in tea (Camellia sinensis). Plant Physiology and Biochemistry. 136, 196-203.




Como Citar

Lisboa, L. A. M., Cavichioli, J. C., Vitorino, R., Figueiredo, P. A. M. de, & Viana, R. da S. (2021). NUTRIENT SUPPRESSION IN PASSION FRUIT SPECIES: AN APPROACH TO LEAF DEVELOPMENT AND MORPHOLOGY. Colloquium Agrariae. ISSN: 1809-8215, 17(3), 89–102. Recuperado de

Artigos mais lidos pelo mesmo(s) autor(es)