UTILIZAÇÃO DE PÓ DE ROCHA COM Nb2O5: ALTERNATIVA PARA TRATAMENTO DE EFLUENTES INDUSTRIAIS

Autores

  • Lariana Negrão Beraldo de Almeida Universidade do Oeste Paulista – UNOESTE
  • Laura Santos Ribas Universidade Tecnológica Federal do Paraná – UTFPR
  • Diogo Inglês Zarpellon Universidade Tecnológica Federal do Paraná – UTFPR
  • Daniele Toniolo Dias Universidade Tecnológica Federal do Paraná – UTFPR
  • Onelia Aparecida Andreo dos Santos Universidade Estadual de Maringá – UEM
  • Giane Gonçalves Lenzi Universidade Tecnológica Federal do Paraná – UTFPR

Palavras-chave:

nióbio, corante, pedreira

Resumo

Nesta presente pesquisa, avaliou-se o uso de Nb2O5 e pó de rocha, um subproduto proveniente de pedreiras, como fotocatalisadores na descoloração de efluente sintético. Os materiais foram usados isoladamente em sua forma pura e também combinados, por impregnação úmida, em diferentes proporções (20,50,80% em peso) para identificar se sua sinergia afetaria positivamente a descoloração. As técnicas de Microscopia Eletrônica de Varredura, Difração de Raios X, Adsorção e Dessorção de N2 e Espectroscopia Fotoacústica foram empregadas para caracterização dos materiais. Os materiais puros demonstraram ser excelentes fotocatalisadores nos ensaios experimentais, entretanto, a mistura de pó de rocha com Nb2O5 prejudicou a eficácia na descoloração do corante CI Yellow Basic 96. A caracterização de espectroscopia fotoacústica indicou que a combinação dos materiais alterou a banda de absorção, comprometendo sua ação catalítica. Apesar disso, ambos os materiais, quando usados isoladamente, alcançaram alta descoloração (PR: 85%, Nb2O5: 97%), destacando seu potencial no tratamento de efluentes contendo corante.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

ABIROCHAS. O setor de rochas ornamentais e de revestimento: situação atual, demandas e perspectivas frente ao novo marco regulatorio da mineração brasileira. Informe Abirochas, v. 6, p. 1-17, 2013.

ADAMCZUK, M.; PAWLIK-SKOWROŃSKA, B.; SOLIS, M. Do anthropogenic hydrological alterations in shallow lakes affect the dynamics of plankton? Ecological Indicators., v. 114, p. 106312, 2020. DOI: https://doi.org/10.1016/j.ecolind.2020.106312

AGGARWAL, K.; VERMA, A.; BANSAL, P.; SINGH, A. Heterogeneous photo-Fenton and photocatalytic degradation studies of 2-chloro-4-nitrophenol (2Cl4NP) using foundry sand and TiO2 coated cement/clay beads. Brazilian Journal of Chemical Engineering, v. 34, p. 747–758, 2017.

DOI: https://doi.org/10.1590/0104-6632.20170343s2015070

ANILKUMAR, M.; HOELDERICH, W. F. Gas phase Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam over mesoporous, microporous and amorphous Nb 2O5/silica catalysts: A comparative study. Catalysis Today, v. 198, p. 289–299, 2012 DOI: https://doi.org/10.1016/j.cattod.2012.01.043

ARUNMETHA, S.; VINOTH, M.; SRITHER, S.R.; KARTHIK, A.; SRIDHARPANDAY, M.; SURIYAPRABHA, R.; MANIVASAKAN, P.; RAJENDRAN, V. Study on Production of Silicon Nanoparticles from Quartz Sand for Hybrid Solar Cell Applications. Journal of Electronic Materials,v. 47, p. 493–502. 2018.

DOI: https://doi.org/10.1007/s11664-017-5794-0

BORUAH, B.; GUPTA, R.; MODAK, J.M.; MADRAS, G. Enhanced photocatalysis and bacterial inhibition in Nb2O5: Via versatile doping with metals (Sr, Y, Zr, and Ag): A critical assessment. Nanoscale Advances, v. 1, p. 2748–2760, 2019. DOI: https://doi.org/10.1039/C9NA00305C

DIAS, Y. R.; PEREZ-LOPEZ, O. W. CO2conversion to methane using Ni/SiO2catalysts promoted by Fe, Co and Zn. Journal of Environmental Chemical Engineering, v. 9, p. 104629, 2021 DOI: https://doi.org/10.1016/j.jece.2020.104629

FALS, H. C.; LOURENÇATO, L. A.; OROZCO, M. S.; BELÉM, M. J. X.; LIMA, C. R. C. Slurry erosion resistance of thermally sprayed Nb2O5 and Nb2O5+WC12Co composite coatings deposited on AISI 1020 carbon steel. Ceramics International, v. 46, p. 27670–27678, 2020. DOI: https://doi.org/10.1016/j.ceramint.2020.07.264

FATIMAH, I.; SAID, A.; HASANAH, U.A.; . Preparation of TiO2-SiO2 using Rice Husk Ash as Silica Source and The Kinetics Study as Photocatalyst in Methyl Violet Decolorization. Bulletin of Chemical Reaction Engineering & Catalysis, v. 10, p. 43–49, 2015. DOI: https://doi.org/10.9767/bcrec.10.1.7218.43-49

FERREIRA, S.A.D.; DONADIA, J.F.; GONÇALVES, G.R.; TEIXEIRA, A.L.; FREITAS, M.B.J.G.; FERNANDES, A.A.R. Photocatalytic performance of granite waste in the decolorization and degradation of Reactive Orange 122. Journal of Environmental Chemical Engineering, v. 7, p. 103144, 2019. DOI: https://doi.org/10.1016/j.jece.2019.103144

FUZIKI, M.E.K.; ABREU, E.; CARVALHO, A.E.; SILVA, L.H.B.O.; FIDELIS, M.Z.; TUSSET, A.M.; BRACKMANN, R.; DIAS, D.T.; LENZI, G.G. Sol–gel Fe/TiO2 Magnetic Catalysts Applied to Selenium Photoreduction. Topics in Catalysis, v. 63, p. 1131–1144, 2020. DOI: https://doi.org/10.1007/s11244-020-01276-1

ITO, T.; SHIMADA, Y.; SUTO, T.Potential use of bacteria collected from human hands for textile dye decolorization. Water Resources and Industry 20, 46–53, 2018. DOI: https://doi.org/10.1016/j.wri.2018.09.001

JOSUÉ, T.G.; ALMEIDA, L.N.B.; LOPES, M.F.; SANTOS, O.A.A.; LENZI, G.G.Cr (VI) reduction by photocatalyic process: Nb2O5 an alternative catalyst. Journal of Environmental Management, v. 268, p. 110711, 2020. DOI: https://doi.org/10.1016/j.jenvman.2020.110711

LELLIS, B.; FÁVARO-POLONIO, C.Z.; PAMPHILE, J.A.; POLONIO, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation Journal, v. 3, p. 275–290, 2019. DOI: https://doi.org/10.1016/j.biori.2019.09.001

LENZI, G.G.; FÁVERO, C.V.B.; COLPINI, L.M.S.; BERNABE, H.; BAESSO, M.L.; SPECCHIA, S.; SANTOS, O.A.A. Photocatalytic reduction of Hg (II) on TiO2 and Ag/TiO2 prepared by the sol – gel and impregnation methods. Desalination, v. 270, p. 241–247, 2011. DOI: https://doi.org/10.1016/j.desal.2010.11.0511

LOPES, O.F.; MENDONÇA, V.R. ; SILVA, F.B.F.; PARIS, E.C.; RIBEIRO, C. Niobium Oxides: An overview of the synthesis of Nb2O5 and its application in heterogeneous photocatalysis. Quimica Nova, v.38, p. 106–117, 2015. DOI: https://doi.org/10.5935/0100-4042.20140280

MANGRULKAR, P.A.; JOSHI, M. V.; KAMBLE, S.P.; LABHSETWAR, N.K.; RAYALU, S.S. Hydrogen evolution by a low cost photocatalyst: Bauxite residue. International Journal of Hydrogen Energy, v. 35, p. 10859–10866, 2010. DOI: https://doi.org/10.1016/j.ijhydene.2009.10.075

MANGRULKAR, P. A.; KAMBLE, S.P.; JOSHI, M.M.; MESHRAM, J.S.; LABHSETWAR, N.K.; RAYALU, S. S. Photocatalytic degradation of phenolics by N-doped mesoporous titania under solar radiation. International Journal of Photoenergy, v.2012, p. 1–10, 2012. DOI: https://doi.org/10.1016/j.envres.2021.110956

METHNENI, N.; GAONZÁLEZ, J.A.M.; JAZIRI, A.; MANSOUR, H. BEN; FERNANDEZ-SERRANO, M. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology Appraisal via a battery of Biotests. Environmental Research, v. 196, p. 144034, 2021 DOI: https://doi.org/10.1016/j.envres.2021.110956

MORAIS, D.F.S.; BOAVENTURA, R.A.R.; MOREIRA, F.C.; VILAR, V.J.P.Bromate removal from water intended for human consumption by heterogeneous photocatalysis: Effect of major dissolved water constituents. Chemosphere, v. 263, p. 128111, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2020.128111

NUNES, B.N.; LOPES, O.F.; PATROCINIO, A.O.T.; BAHNEMANN, D.W. Recent advances in niobium-based materials for photocatalytic solar fuel production. Catalysts 10, 1–31, 2020. DOI: https://doi.org/10.3390/catal10010126

RAMOS, C.G.; DE MELLO, A.G.; KAUTZMANN, R.M. A preliminary study of acid volcanic rocks for stonemeal application. Environmental Nanotechnology, Monitoring & Management, v. 1/2, p. 30–35, 2014. DOI: https://doi.org/10.1016/j.enmm.2014.03.002

RANI, S.; SANGHI, S.; AGARWAL, A.; KHASA, S. Influence of Nb2O5 on the optical band gap and electrical conductivity of Nb2O5•BaO•B 2O3. IOP Conference Series: Materials Science and Engineering, v.. 2, p. 2–6, 2009.DOI: https://doi.org/10.1088/1757-899X/2/1/012041

SANTOS, F. V.; AZEVEDO, E.B.; SANT’ANNA, G.L.; DEZOTTI, M. Photocatalysis as a tertiary treatment for petroleum refinery wastewaters. Brazilian Journal of Chemical Engineering, v. 23, p. 451–460, 2006. DOI: https://doi.org/10.1590/S0104-66322006000400003

SHARMA, S.B.; KUMAR, B. Effects of stone crusher dust pollution on growth performance and yield status of rice (Oryza sativa. L). International Journal of Current Microbiology and Applied Sciences, v.5, p. 796–806, 2016. DOI: https://doi.org/10.20546/ijcmas.2016.505.080

SILVA, W. L. D.; HAMILTON, J.W.J.; SHARMA, P.K.; DUNLOP, P.S.M.; BYRNE, J.A.; SANTOS, J.H.Z. Agro and industrial residues: Potential raw materials for photocatalyst development. Journal of Photochemistry and Photobiology A: Chemistry, v. 15, p. 113184, 2021. DOI: https://doi.org/10.1016/j.jphotochem.2021.113184

TAFFAREL, S.R.; LANSARIN, M.A.; MORO, C.C. Styrene photocatalytic degradation reaction kinetics. Journal of the Brazilian Chemical Society,v. 22, p. 1872–1879, 2011. DOI: https://doi.org/10.1590/S0103-50532011001000007

THAKUR, V.; KUSHWAHA, H.S.; SINGH, A.; VAISH, R.; PUNIA, R.; SINGH, L. A study on the structural and photocatalytic degradation of ciprofloxacine using (70B2O3-29Bi2O3-1Dy2O3)-x(BaO-TiO2) glass ceramics. Journal of Non-Crystalline Solids, v. 428, p. 197–203, 2015. DOI: https://doi.org/10.1016/j.jnoncrysol.2015.08.009

USHA, N.; SIVAKUMAR, R.; SANJEEVIRAJA, C.; ARIVANANDHAN, M. Niobium pentoxide (Nb2O5) thin films: Rf Power and substrate temperature induced changes in physical properties. Optik (Stuttg), v. 126, p. 1945–1950, 2015. DOI: https://doi.org/10.1016/j.ijleo.2015.05.036

WANG, H.; QI, H.-P.; WEI, X.-N.; LIU, X.-Y.; JIANG, W.-F. Photocatalytic activity of Ti2 supported SiO2‐Al2O3 aerogels prepared from industrial fly ash. Chinese Journal of Catalysis, v. 37, p. 2025–2032, 2016. DOI: https://doi.org/10.1016/S1872-2067(16)62546-9

WETCHAKUN, K.; WETCHAKUN, N.; SAKULSERMSUK, S. An overview of solar/visible light-driven heterogeneous photocatalysis for water puri fi cation : TiO2 - and ZnO-based photocatalysts used in suspension photoreactors. Journal of Industrial and Engineering Chemistry, v. 71, p.19–49, 2019. DOI: https://doi.org/10.1016/j.jiec.2018.11.025

YENER, H.B.; HELVACI, S.S. Effect of synthesis temperature on the structural properties and photocatalytic activity of TiO2/SiO2 composites synthesized using rice husk ash as a SiO2 source. Separation and Purification Technology, v. 140, p. 84–93, 2015. DOI: https://doi.org/10.1016/j.seppur.2014.11.013

ZHANG, J.; JIANG, T.; MAI, Y.; WANG, X.; CHEN, J.; LIAO, B. Selective catalytic oxidation of sulfides to sulfoxides or sulfones over amorphous Nb2O5/AC catalysts in aqueous phase at room temperature. Catalysis Communications, v. 127, p.10–14, 2019. DOI: https://doi.org/10.1016/j.catcom.2019.04.013

ZHANG, P.; WANG, M.; WANG, J.; TENG, X.; ZHANG, S.; XIE, H.; DING, S. Facile synthesis and characterization of low crystalline Nb2O5 ultrafine nanoparticles as a new efficient photocatalyst. Journal of Non-Crystalline Solids, v. 500, p. 371–376, 2018. DOI: https://doi.org/10.1016/j.jnoncrysol.2018.08.026

Downloads

Publicado

2024-01-10

Como Citar

UTILIZAÇÃO DE PÓ DE ROCHA COM Nb2O5: ALTERNATIVA PARA TRATAMENTO DE EFLUENTES INDUSTRIAIS. (2024). Colloquium Exactarum. ISSN: 2178-8332, 15(1), e234782. https://journal.unoeste.br/index.php/ce/article/view/4782