STABILIZED SOIL FROM GRAY LAYER OF GUABIROTUBA FORMATION FOR URBAN PAVING PURPOSES IN CURITIBA, BRAZIL

Authors

  • Jair de Jesús Arrieta Baldovino UNIVERSIDADE TECNOLOGIA FEDERAL DO PARANA
  • Ronaldo Luis dos Santos Izzo UNIVERSIDADE TECNOLOGIA FEDERAL DO PARANA

Keywords:

Guabirotuba Formation, Stabilization, Paving, Durability

Abstract

The Guabirotuba Formation is located over the sedimentary basin of the city of Curitiba (Brazil). The gray layer of the Formation extends from 1 to 50 m deep. Although it is the most characteristic layer of the Formation, there are no studies of stabilization of these soils for urban paving purposes in the city. Thus, this paper presents an experimental study of the stabilization of a gray silt soil with Portland cement (PC) using cure times (t) of 7, 14 and 28 days. Cement contents (C) of 3, 5, 7 and 9% in relation to soil dry mass were used. After cure times, simple compressive strength (qu) and durability tests were performed using wet/dry cycles (M/S). The results show an increase of qu with increasing cement content, increasing molding density and increasing curing time. In addition, the durability of the mixtures increased when more cement was added. It was found that the values ​​of qu are dependent on the semi-empirical porosity/cement ratio (η/Civ). Finally, it was found that 5% is the minimum cement content for soil use for paving purposes.

Downloads

Download data is not yet available.

References

ASTM. ASTM D 2487 - 11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). 2011, ASTM International, West Conshohocken, Pa, D5521-5, 1–5.

ASTM. ASTM D 854 - 14 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer 1. 2014, ASTM International, West Conshohocken, Pa.

ASTM D559/D559M-15. Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. ASTM International, 2015, West Conshohocken, Pa, 1–6.

ASOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). Solos e rochas. NBR 6502: 1995. Rio de Janeiro, Brasil.

ASOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). Solo-Determinação do limite de liquidez. NBR 6459: 2016a. Rio de Janeiro, Brasil.

ASOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). Solo — Determinação do limite de plasticidade. NBR 7180: 2016b, Rio de Janeiro, Brasil.

ASOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). Cimento Portland e outros materiais em pó — Determinação da massa específica. NBR 16605: 2017, Rio de Janeiro, Brasil.

ASOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). Solo - Ensaio de compactação. NBR 7182: 2016c, Rio de Janeiro, Brasil.

ASOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). Concreto - Ensaio de compressão de corpos de prova cilíndricos. NBR 5739: 2018, Rio de Janeiro, Brasil.

BALDOVINO, J. A.; MOREIRA, E. B.; IZZO, R. L. DOS S.; ROSE, J. L. Empirical Relationships with Unconfined Compressive Strength and Split Tensile Strength for the Long Term of a Lime-Treated Silty Soil. Journal of Materials in Civil Engineering, 30(8), 6018008, 2018a. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002378

BALDOVINO, J. A.; MOREIRA, E. B.; TEIXEIRA, W.; IZZO, R. L. S.; ROSE, J. L. Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil. Journal of Rock Mechanics and Geotechnical Engineering, 10(1), 188–194, 2018b.https://doi.org/10.1016/j.jrmge.2017.10.001

BALDOVINO, J. A.; MOREIRA, E. B.; IZZO, R. L. S. Discussion of Control factors for the long term compressive strength of lime treated sandy clay soil. Transportation Geotechnics, 15, 1–3, 2018c. https://doi.org/10.1016/j.trgeo.2017.11.002


BALDOVINO, J. D. J. A.; DOS SANTOS IZZO, R. L.; MOREIRA, E. B.; ROSE, J. L. Optimizing the evolution of strength for lime-stabilized rammed soil. Journal of rock mechanics and geotechnical engineering, 11(4), 882-891, 2019a. https://doi.org/10.1016/j.jrmge.2018.10.008

BALDOVINO, J. A.; MOREIRA, E. B.; CARAZZAI, É.; ROCHA, E.; IZZO, R.; MAZER, W.; ROSE, J. L. Equations controlling the strength of sedimentary silty soil–cement blends: influence of voids/cement ratio and types of cement. International Journal of Geotechnical Engineering, 1–14, 2019b. https://doi.org/10.1080/19386362.2019.1612134

BALDOVINO, J. D. J. A.; DOS SANTOS IZZO, R. L. Relação porosidade/cimento como parâmetro de control na estabilização de um solo siltoso. Colloquium Exactarum. 11(1), 89-100, 2019. https://doi.org/10.5747/ce.2019.v11.n1.e269

BALDOVINO, J. D. J. A.; DOS SANTOS IZZO, R. L.; FELTRIM, F.; DA SILVA, É. R. Experimental Study on Guabirotuba’s Soil Stabilization Using Extreme Molding Conditions. Geotechnical and Geological Engineering, 1-17, 2020a. https://doi.org/10.1007/s10706-019-01171-x

BALDOVINO, J.; IZZO, R.; PEREIRA, M.; ROCHA, E.; ROSE, J.; BORDIGNON, V. Equations Controlling the Tensile and Compressive Strength Ratio of Sedimentary Soil-Cement Mixtures Under Optimal Compaction Conditions. Journal of Materials in Civil Engineering, 32(1), 4019320, 2020b. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002973

CONSOLI, N. C., FESTUGATO, L., DA ROCHA, C. G., e CRUZ, R. C. Key parameters for strength control of rammed sand–cement mixtures: Influence of types of portland cement. Construction and Building Materials, 49, 591–597, 2013. https://doi.org/10.1016/j.conbuildmat.2013.08.062

CONSOLI, N. C., FOPPA, D., FESTUGATO, L., e HEINECK, K. S. Key Parameters for Strength Control of Artificially Cemented Soils. Journal of Geotechnical and Geoenvironmental Engineering, 133(2), 197–205, 2007. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197)

DIAMBRA, A.; IBRAIM, E.; PECCIN, A.; CONSOLI, N. C.; AND FESTUGATO, L.. Theoretical Derivation of Artificially Cemented Granular Soil Strength. Journal of Geotechnical and Geoenvironmental Engineering, 143(5), 4017003, 2017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646

FIROOZI, A. A.; GUNEY OLGUN, C.; FIROOZI, A. A.; BAGHINI, M. S. Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8(1), 26, 2017. https://doi.org/10.1186/s40703-017-0064-9

MINEROPAR. Mapa Geológico do Paraná 1:250.000 e 1:650.000. Instituto de Terras, Cartografia e Geologia do Paraná - ITCG, 2020.http://www.mineropar.pr.gov.br/arquivos/File/2_Geral/Geologia/PDF_Mapa_Geo_650000/Mapa_Geologico_PR_650000_2006.pdf. Accesado em 31/01/2020.

MOLA-ABASI, H.; SHOOSHPASHA, I. Influence of zeolite and cement additions on mechanical behavior of sandy soil. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 746–752 , 2016.https://doi.org/10.1016/j.jrmge.2016.01.008

MOREIRA, E. B.; BALDOVINO, J. A.; ROSE, J. L.; IZZO, R. Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 369–378, 2019.https://doi.org/10.1016/j.jrmge.2018.04.015

MOREIRA, E. B.; BALDOVINO, J. D. J. A.; DOS SANTOS IZZO, R. L.; ROSE, J. L. Impact of sustainable granular materials on the behavior sedimentary silt for road application. Geotechnical and Geological Engineering, 38(1), 917-933, 2020. https://doi.org/10.1007/s10706-019-01025-6

PORTLAND CEMENT ASSOCIATION, PCA. Soil-cement laboratory handbook. Skokie, IL: Portland Cement Association, 1992.

RIOS, S., VIANA DA FONSECA, A., e BAUDET, B. A. Effect of the Porosity/Cement Ratio on the Compression of Cemented Soil. Journal of Geotechnical and Geoenvironmental Engineering, 138(11), 1422–1426, 2012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000698

Published

2020-06-15

Issue

Section

Artigo Científico Original

How to Cite

STABILIZED SOIL FROM GRAY LAYER OF GUABIROTUBA FORMATION FOR URBAN PAVING PURPOSES IN CURITIBA, BRAZIL. (2020). Colloquium Exactarum. ISSN: 2178-8332, 12(1), 39-52. https://journal.unoeste.br/index.php/ce/article/view/3438