DETECÇÃO DE FALHAS EM LINHAS DE PLANTIO EM IMAGENS OBTIDAS POR VANT UTILIZANDO CNN E OPERADORES MORFOLÓGICOS
Palavras-chave:
Visão Computacional, CNN, Linhas de Plantio, VANT, Operador MorfológicoResumo
A população mundial cresce a cada ano, porém, as terras cultiváveis do planeta já estão praticamente todas em uso ou protegidas por leis ambientais. A humanidade precisa encontrar meios de aumentar a produtividade no campo, e uma das formas é fazendo o uso da tecnologia. Este trabalho utiliza recursos computacionais para detectar falhas em linhas de plantio, por meio da análise de imagens de plantações obtidas por VANTs. Na metodologia desenvolvida foram utilizados CNN, operadores morfológicos e um algoritmo para desenhar as linhas de plantio. Com as falhas detectadas, busca-se auxiliar o produtor rural a tomar melhores decisões, aumentar sua produção e diminuir os prejuízos. Os resultados obtidos são considerados satisfatórios, mas estão intimamente ligados a qualidade da classificação da imagem pela CNN, que apresentou F1 Score em torno de 92%.
Downloads
Referências
ALVES, M. O.; FERREIRA, R. V.; GALLIS, R. B. A. Otimização da Identificação de Falhas de Plantio na Cana-de-Açúcar com Uso de Geoprocessamento. In: CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, 10., 2015, Ponta Grossa, Pr. Anais [...]. Ponta Grossa, Pr: UEPG - PPGCA, 2015. p. 268-278.
BAH, M D.; HAFIANE, A.; CANALS, R. CRowNet: deep network for crop row detection in UAV images. IEEE Access. [S. l.], p. 5189-5200. 19 dez. 2019.
CANAONLINE. Usinas e produtores não podem se conformar com um canavial cheio de falhas. 2016. Disponível em: http://www.canaonline.com.br/conteudo/usinas-e-produtores-nao-podem-se-conformar-com-um-canavial-cheio-de-falhas.html. Acesso em: 08 dez. 2020.
CRULHAS, J. P. R.; ARTERO, A. O.; PITERI, M. A.; SILVA, F. A.; PEREIRA, D. R.; ELER, D. M.; PAPA, J. P.; ALBUQUERQUE, V. H. C. Blank Spots Identification on Plantations. IEEE Latin America Transactions. [S. l.], p. 2115-2121. ago. 2018.
FAO. The future of food and agriculture: trends and challenges. Roma: Food and Agriculture Organization of the United Nations, 2017. 163 p.
HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep Residual Learning for Image Recognition. 2015. Disponível em: https://arxiv.org/abs/1512.03385. Acesso em: 23 nov. 2021.
HENRIQUE, A. Tecnologia Agrícola: drones para análise de falhas dos canaviais. Drones para análise de falhas dos canaviais. 2018. RPAnews - cana & indústria - Edição 199 - Junho. Disponível em: https://revistarpanews.com.br/tecnologia-agricola-drones-para-analise-de-falhas-dos-canaviais. Acesso em: 15 set. 2020.
HOUGH Line Transform: OpenCV-Python Tutorials beta documentation. OpenCV-Python Tutorials beta documentation. 2016. Disponível em: https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html. Acesso em: 02 nov. 2021.
HOUGH, P.V.C. Method and means for recognizing complex patterns, U.S. Patent 3,069,654, Dec. 18, 1962.
KAMILARIS, A.; PRENAFETA-BOLDÚ, F. X. A review of the use of convolutional neural networks in agriculture. The Journal Of Agricultural Science. [S. l.], p. 1-11. 24 maio 2018.
MONTEIRO, A. A. O.; VON WANGENHEIM, A. Orthomosaic Dataset of RGB aerial Images for Weed Mapping. 2019. INCoD Datasets Repository LAPIX/UFSC. Disponível em: http://www.lapix.ufsc.br/weed-mapping-sugar-cane. Acesso em: 4 dez. 2020.
NUMPY. 2021. Disponível em: https://numpy.org/. Acesso em: 08 nov. 2021.
OPENCV. 2021. Disponível em: https://opencv.org/. Acesso em: 08 nov. 2021.
OTSU, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, And Cybernetics, v. 9, n. 1, p. 62-66, 1979. https://doi.org/10.1109/TSMC.1979.4310076
PEREIRA JUNIOR, P. C.; VON WANGENHEIM, A. Orthomosaic Dataset of RGB aerial Images for Crop Rows Detection. 2019. INCoD Datasets Repository LAPIX/UFSC. Disponível em: http://www.lapix.ufsc.br/crop-rows-sugar-cane. Acesso em: 4 dez. 2020.
PIERCE, F. J.; NOWAK, P. ASPECTS OF PRECISION AGRICULTURE. In: DONALD L. SPARKS (EUA) (ed.). Advances in Agronomy. [S. l.]: Academic Press, 1999. p. 1-85.
SAATH, K. C. O.; FACHINELLO, A. L. Crescimento da demanda mundial de alimentos e restrições do fator terra no Brasil. Revista de Economia e Sociologia Rural, [S.L.], v. 56, n. 2, p. 195-212, jun. 2018. Trimestral. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1234-56781806-94790560201.
SILVA, P. R. A. Plantio sem erros. Revista Cultivar Máquinas, Pelotas, v. 1, n. 152, p. 30-31, jun. 2015. Disponível em: https://www.grupocultivar.com.br/revistas/27. Acesso em: 13 set. 2020.
STOLF, R. Metodologia de avaliação de falhas nas linhas de cana-de-açúcar. Revista STAB, Piracicaba, v.4, n.6, p.22-36, 1986.
STOLF, R; GARCIA, T. B.; NERIS, L. O.; TRINDADE JUNIOR, O.; REICHARDT, K. Avaliação de falhas em cana de açúcar segundo o método de Stolf utilizando imagens aéreas de alta precisão obtidas por VANT.STAB –Março/Abril 2016, v. 34, n. 4.
TENSORFLOW. 2021. Disponível em: https://www.tensorflow.org/?hl=pt-br. Acesso em: 08 nov. 2021.
WERNER, V. Análise Econômica e Experiência Comparativa entre Agricultura de Precisão e Tradicional. 2007. 133 f. Tese (Doutorado) - Curso de Engenharia Agrícola, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil, 2007.
YU, F.; KOLTUN, V. Multi-Scale Context Aggregation by Dilated Convolutions. 2016. Disponível em: https://arxiv.org/abs/1511.07122v3. Acesso em: 26 nov. 2021.
ZHANG. T. Y., SUEN. C. Y., A Fast Parallel Algorithm for Thinning Digital Patterns, ACM Vol 27 No. 3, 1984.
ZHAO, H.; SHI, J.; QI, X.; WANG, X.; JIA, J. Pyramid Scene Parsing Network. 2017. Disponível em: https://arxiv.org/abs/1612.01105v2. Acesso em: 28 out. 2021.
ZHOU, B.; ZHAO, H.; PUIG, X.; FIDLER, S.; BARRIUSO, A.; TORRALBA, A. Scene Parsing through ADE20K Dataset. Computer Vision and Pattern Recognition (CVPR), 2017. Disponível em: http://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf. Acesso em: 2 dez. 2021.
ZHOU, B.; ZHAO, H.; PUIG, X.; XIAO, T.; FIDLER, S.; BARRIUSO, A.; TORRALBA, A. Semantic Understanding of Scenes through the ADE20K Dataset. International Journal of Computer Vision (IJCV), 2016. Disponível em: https://arxiv.org/pdf/1608.05442.pdf. Acesso em: 14 dez. 2021.