CONSTRUÇÃO DE IMAGENS PANORÂMICAS EM MÚLTIPLAS FAIXAS DE ALTURA E LARGURA USANDO ALGORITMOS WATERSHED E GRAPH-CUT
Palavras-chave:
Panorama de imagens, Costura de imagens, Graph-cut, Watershed, SIFT, RANSACResumo
Neste trabalho foi desenvolvido um algoritmo para construção de panoramas de imagens com múltiplas faixas de altura e largura. Para a costura multilinear, as imagens foram inicialmente colocadas em uma matriz e foram gerados panoramas parciais com imagens da mesma coluna. Para completar o panorama final, as colunas foram divididas com o auxílio de pontos de apoio e as colunas vizinhas foram costuradas, sendo remontadas ao final do processo. A costura foi realizada com um algoritmo de corte de grafo em conjunto com o algoritmo Watershed.
Downloads
Referências
NYMAN, P. Image stitching using watersheds and graph cuts. Centre for Mathematical Sciences, Lund University, Sweden, 2010.
SZELISKI, R. Image alignment and stitching: A tutorial. Foundations and Trends® in Computer Graphics and Vision, vol. 2, no. 1, pp. 1-104, 2006.
https://doi.org/10.1561/0600000009
ZHENG, J.; ZHANG, Z.; TAO, Q.; SHEN, K.; WANG, Y. An accurate multi-row panorama generation using multi-point joint stitching. Sequential Data Modeling and Its Emerging Applications, IEEE Access, vol. 6, pp. 27827-27839, 2018.
https://doi.org/10.1109/ACCESS.2018.2829082
RU, D.; WANG, V.; HU, Q.; HU, W. The construction method of measurable aerial panorama based on panoramic image and multi-view oblique images matching. In: 4th IEEE INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA), Guangzhou, China. 2016.
LOWE, D. G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, vol. 60, n.2, pp. 91-110, 2004.
https://doi.org/10.1023/B:VISI.0000029664.99615.94
SILVA, F. A.; PEREIRA, D. R.; SILVA, J. F. C.; ARTERO, A. O.; PITERI, M. A. TSRS - A new approach for traffic sign recognition using the SIFT algorithm. Journal of Urban and Environmental Engineering, vol. 2, no. 2, pp. 1-5, 2017.
KOENDERINK, J. J. The structure of images. Biological Cybernetics, vol. 50, pp. 363-396, 1984.
https://doi.org/10.1007/BF00336961
LINDEBERG, T. "Scale-space theory: a basic tool for analyzing structures at different scales. Journal of applied Statistics, vol. 21, issue 1-2, pp. 225-270, 1994.
https://doi.org/10.1080/757582976
LOWE, D. G. "Object recognition from local scale-invariant features", in: IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, Kerkyra, Greece, pp. 1150-1157, 1999.
https://doi.org/10.1109/ICCV.1999.790410
MIKOLAJCZYK, K.; SCHMID, C. A performance evaluation of local descriptors. IEEE Transaction on Pattern Analysis and Machine Intelligence. vol. 27, Issue 10, pp. 1615-1630, 2005.
https://doi.org/10.1109/TPAMI.2005.188
BEIS, J.; LOWE, D. G. Shape indexing using approximate nearest-neighbour search in high dimensional spaces. In: IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, San Juan, Puerto Rico, USA, pp. 1000-1006. 1997.
OKABE, T.; SATO, Y. Object recognition based on photometric alignment using RANSAC. In: IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, Madison, WI, USA, pp. 221-228. 2003.
FISCHLER, M. A.; BOLLES, R. C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, vol. 24, no. 6, pp. 381-395, 1981.
https://doi.org/10.1145/358669.358692
BROWN, M.; LOWE, D. G. Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, vol. 74, issue 1, p.p 59-73, 2007.
https://doi.org/10.1007/s11263-006-0002-3
GRACIAS, N.; MAHOOR, M. H.; NEGAHDARIPOUR, S.; GLEASON, A. Fast image blending using watersheds and graph cuts. Image and Vision Computing, vol. 27, pp. 597-607, 2009.
https://doi.org/10.1016/j.imavis.2008.04.014
VINCENT, L.; SOILLE, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, issue 6, pp. 583-598, 1991.
https://doi.org/10.1109/34.87344
BEUCHER, S. Image segmentation and mathematical morphology. the watershed transformation. 2010. Disponível em: http://www.cmm.mines-paristech.fr/~beucher/wtshed.html. Acessado em 12 dez. 2020.
DANTZIG, G. B.; FULKERSON, D. R. On the max-flow min-cut theorem of networks. RAND corporation, vol. 13, 1964.
HIRAGA, A. K.; SILVA, F. A.; ARTERO, A. O.; PAIVA, M. S. V. Um novo algoritmo para a construção de imagens panorâmicas usando os algoritmos SIFT e RANSAC. In: III SIMPÓSIO BRASILEIRO DE GEOMÁTICA, Presidente Prudente-SP, vol. 1. pp. 151-156, 2012.