INTERAÇÃO DO LAPACHOL COM NANOPLATAFORMAS MICELARES DRUG DELIVERY

Autores

  • Katieli da Silva Souza Campanholi Departamento de Química, Universidade Estadual de Maringá
  • Flávia Amanda Pedroso de Morais Departamento de Química, Universidade Estadual de Maringá
  • Évelin Lemos de Oliveira Departamento de Química, Universidade Estadual de Maringá
  • Maycon Renan Santos Lima Universidade Estadual de Maringá
  • Elza Aparecida da Silva Departamento de Enfermagem, União das Escolas Superiores de Rondônia
  • Expedito Leite Silva Departamento de Química, Universidade Estadual de Maringá
  • Wilker Caetano Departamento de Química, Universidade Estadual de Maringá

Palavras-chave:

Lapachol, Pluronic®, Naftoquinona, Constante de ligação.

Resumo

Este artigo contempla aspectos relacionados a capacidade de interação e monomerização do fármaco lapachol com os sistemas nanoestruturados micelares F127 e P123. Para isso, estudos prévios de agregação foram conduzidos para descrição da dinâmica agregacional do princípio ativo e sua influência nas propriedades espectroscópicas. A proposta deste trabalho é enriquecer o arsenal terapêutico atual com um novo formulado descrito pelo elevado potencial antimalárico, antitripanossômico, analgésico e antitinflamatório.

Downloads

Não há dados estatísticos.

Referências

Alexandridis, P., & Alan Hatton, T. (1995). Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 96(1–2), 1–46. https://doi.org/10.1016/0927-7757(94)03028-X

Batrakova, E. V, Li, S., Brynskikh, A. M., Sharma, A. K., Li, Y., Boska, M., Gong, N., Mosley, R. L., Alakhov, V. Y., Gendelman, H. E., & Kabanov, A. V. (2010). Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. Journal of Controlled Release : Official Journal of the Controlled Release Society, 143(3), 290–301. https://doi.org/10.1016/j.jconrel.2010.01.004

Bevilaqua, T., Gonçalves, T. F., Venturini, C. de G., & Machado, V. G. (2006). Solute-solvent and solvent-solvent interactions in the preferential solvation of 4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide in 24 binary solvent mixtures. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 65(3–4), 535–542. https://doi.org/10.1016/j.saa.2005.12.005

Bosch, E., & Roses, M. (1992). Relationship between E T polarity and composition in binary solvent mixtures. Journal of the Chemical Society, Faraday Transactions, 88(24), 3541. https://doi.org/10.1039/ft9928803541

Caetano, W., & Tabak, M. (1999). Interaction of chlorpromazine and trifluoperazine with ionic micelles: electronic absorption spectroscopy studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55(12), 2513–2528. https://doi.org/10.1016/S1386-1425(99)00043-8

Caetano, W., Tabak, M., & S, U. De. (2000). Interaction of Chlorpromazine and Trifluoperazine with Anionic Sodium Dodecyl Sulfate ( SDS ) Micelles : Electronic Absorption and Fluorescence Studies. 81, 69–81. https://doi.org/10.1006/jcis.2000.6720

Campanholi, K. da S. S., Gerola, A. P., Vilsinski, B. H., de Oliveira, É. L., de Morais, F. A. P., Rabello, B. R., Braga, G., Calori, I. R., Silva, E. L., Hioka, N., & Caetano, W. (2018). Development of Pluronic ® nanocarriers comprising Pheophorbide, Zn-Pheophorbide, lapachol and β-lapachone combined drugs: Photophysical and spectroscopic studies. Dyes and Pigments. https://doi.org/10.1016/j.dyepig.2018.04.057

da Silva, D. C., Ricken, I., Silva, M. A. do R., & Machado, V. G. (2002). Solute-solvent and solvent-solvent interactions in the preferential solvation of Brooker’s merocyanine in binary solvent mixtures. Journal of Physical Organic Chemistry, 15(7), 420–427. https://doi.org/10.1002/poc.519

Delgado, D. R., Holguín, A. R., Almanza, O. A., Martínez, F., & Marcus, Y. (2011). Solubility and preferential solvation of meloxicam in ethanol+water mixtures. Fluid Phase Equilibria, 305(1), 88–95. https://doi.org/10.1016/j.fluid.2011.03.012

Etienne, T., Michaux, C., Monari, A., Assfeld, X., & Perpète, E. a. (2014). Theoretical computation of Betain B30 solvatochromism using a Polarizable Continuum Model. Dyes and Pigments, 100, 24–31. https://doi.org/10.1016/j.dyepig.2013.07.017

Farajtabar, A., Jaberi, F., & Gharib, F. (2011). Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 83(1), 213–220. https://doi.org/10.1016/j.saa.2011.08.020

Fendler, J. H. (1982). Membrane mimetic chemistry: characterizations and applications of micelles, microemulsions, monolayers, bilayers, vesicles, host-guest systems, and polyions. Wiley.

George, A. (2011). ADVANCES IN BIOMIMETICS (pp. 251–253). https://doi.org/10.5772/574

Ghoneim, N. (2001). Study of the preferential solvation of some betaine dyes in binary solvent mixtures. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 57(9), 1877–1884.

Goulart, M. O. F., Falkowski, P., Ossowski, T., & Liwo, A. (2003). Electrochemical study of oxygen interaction with lapachol and its radical anions. Bioelectrochemistry (Amsterdam, Netherlands), 59(1–2), 85–87.

Gracetto, A. C., Batistela, V. R., Caetano, W., Oliveira, H. P. M. de, Santos, W. G., Cavalheiro, C. C. S., & Hioka, N. (2010). Unusual 1,6-diphenyl-1,3,5-hexatriene (DPH) spectrophotometric behavior in water/ethanol and water/DMSO mixtures. Journal of the Brazilian Chemical Society, 21(8), 1497–1502. https://doi.org/10.1590/S0103-50532010000800013

Guiraud, P., Steiman, R., Campos-Takaki, G. M., Seigle-Murandi, F., & Simeon de Buochberg, M. (1994). Comparison of antibacterial and antifungal activities of lapachol and beta-lapachone. Planta Medica, 60(4), 373–374. https://doi.org/10.1055/s-2006-959504

Hosseinzadeh, R., Maleki, R., Matin, A. A., & Nikkhahi, Y. (2008). Spectrophotometric study of anionic azo-dye light yellow (X6G) interaction with surfactants and its micellar solubilization in cationic surfactant micelles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 69(4), 1183–1187. https://doi.org/10.1016/j.saa.2007.06.022

Hussain, H., Krohn, K., Ahmad, U., & Miana, A. (2007). Lapachol : an overview. 2007(ii), 145–171.

Ito, O., Ito, E., Yoshikawa, Y., Watanabe, A., & Kokubun, H. (1996). Preferential solvation studied by the fluorescence lifetime of acridine in water?alcohol mixtures. Journal of the Chemical Society, Faraday Transactions, 92(2), 227. https://doi.org/10.1039/ft9969200227

Józefowicz, M. (2011). The influence of hydrogen bonds and preferential solvation on spectroscopic properties of methyl p-dimethylaminobenzoate and its ortho derivative in binary solvent mixture. Chemical Physics, 383(1–3), 19–26. https://doi.org/10.1016/j.chemphys.2011.03.025

Kumar, M. R. S., Aithal, K., Rao, B. N., Udupa, N., & Rao, B. S. S. (2009). Cytotoxic, genotoxic and oxidative stress induced by 1,4-naphthoquinone in B16F1 melanoma tumor cells. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 23(2), 242–250. https://doi.org/10.1016/j.tiv.2008.12.004

Kyrychenko, A., Sevriukov, I. Y., Syzova, Z. A., Ladokhin, A. S., & Doroshenko, A. O. (2011). Partitioning of 2,6-Bis(1H-Benzimidazol-2-yl)pyridine fluorophore into a phospholipid bilayer: complementary use of fluorescence quenching studies and molecular dynamics simulations. Biophysical Chemistry, 154(1), 8–17. https://doi.org/10.1016/j.bpc.2010.12.001

Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy (Springer (ed.); 3° edition).

Lázaro, G. S., Meneses, A. L., Macedo, O. F. L. de, Gimenez, I. de F., da Costa, N. B., Barreto, L. S., & Almeida, L. E. (2008). Interaction of pyrimethamine and sulfadiazine with ionic and neutral micelles: Electronic absorption and fluorescence studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324(1–3), 98–104. https://doi.org/10.1016/j.colsurfa.2008.04.002

Liu, P., Wang, B., & Weili Qiao, J. L. (2008). Multi-anticancer drugs encapsulated in the micelle: a novel chemotherapy to cancer. Medical Hypotheses, 71(3), 379–381. https://doi.org/10.1016/j.mehy.2008.05.002

Lopez Arbeloa, T., Lopez Arbeloa, F., Tapia, M. J., & Lopez Arbeloa, I. (1993). Hydrogen-bonding effect on the photophysical properties of 7-aminocoumarin derivatives. The Journal of Physical Chemistry, 97(18), 4704–4707. https://doi.org/10.1021/j100120a024

Maeda, M., Murakami, M., Takegami, T., & Ota, T. (2008). Promotion or suppression of experimental metastasis of B16 melanoma cells after oral administration of lapachol. Toxicology and Applied Pharmacology, 229(2), 232–238. https://doi.org/10.1016/j.taap.2008.01.008

Medeiros, C. S., Pontes-Filho, N. T., Camara, C. A., Lima-Filho, J. V, Oliveira, P. C., Lemos, S. A., Leal, A. F. G., Brandão, J. O. C., & Neves, R. P. (2010). Antifungal activity of the naphthoquinone beta-lapachone against disseminated infection with Cryptococcus neoformans var. neoformans in dexamethasone-immunosuppressed Swiss mice. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Médicas e Biológicas / Sociedade Brasileira de Biofísica ... [et Al.], 43(4), 345–349.

Moon, D.-O., Choi, Y. H., Kim, N.-D., Park, Y.-M., & Kim, G.-Y. (2007). Anti-inflammatory effects of beta-lapachone in lipopolysaccharide-stimulated BV2 microglia. International Immunopharmacology, 7(4), 506–514. https://doi.org/10.1016/j.intimp.2006.12.006

Moore, S. A., Harris, A. A., & Palepu, R. M. (2007). Spectroscopic investigations on the binding of ammonium salt of 8-anilino-1-naphthalene sulfonic acid with non-ionic surfactant micelles in aqueous media. Fluid Phase Equilibria, 251(2), 110–113. https://doi.org/10.1016/j.fluid.2006.11.009

Moreira, L. M., Rodrigues, M. R., Oliveira, H. P. M. de, Lima, A., Soares, R. R. S., Batistela, V. R., Gerola, A. P., Hioka, N., Severino, D., Baptista, M. S., & Machado, A. E. da H. (2010). Influência de diferentes sistemas de solvente água-etanol sobre as propriedades físico-químicas e espectroscópicas dos compostos macrocíclicos feofitina e clorofila α. Química Nova, 33(2), 258–262. https://doi.org/10.1590/S0100-40422010000200005

Murakami, K. (2002). Thermodynamic and kinetic aspects of self-association of dyes in aqueous solution. Dyes and Pigments, 53(1), 31–43. https://doi.org/10.1016/S0143-7208(01)00104-8

Nomura, H., Onoda, M., & Miyahara, Y. (1982). Preferential Solvation of Dextran in Water–Ethanol Mixtures. Polymer Journal, 14(4), 249–253. https://doi.org/10.1295/polymj.14.249

Ough, M., Lewis, A., Bey, E. A., Gao, J., Ritchie, J. M., Bornmann, W., Boothman, D. A., Oberley, L. W., & Cullen, J. J. (2005). Efficacy of beta-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1. Cancer Biology & Therapy, 4(1), 95–102.

Peeters, D., & Leroy, G. (1994). Small clusters between water and alcohols. Journal of Molecular Structure: THEOCHEM, 314(1–2), 39–47. https://doi.org/10.1016/0166-1280(94)03800-Z

Peetla, C., Stine, A., & Labhasetwar, V. (2009). Biophysical Interactions with Model Lipid Membranes: Applications in Drug Discovery and Drug Delivery. Molecular Pharmaceutics, 6(5), 1264–1276. https://doi.org/10.1021/mp9000662

Pellosi, D. S., Estevão, B. M., Freitas, C. F., Tsubone, T. M., Caetano, W., & Hioka, N. (2013). Photophysical properties of erythrosin ester derivatives in ionic and non-ionic micelles. Dyes and Pigments, 99(3), 705–712. https://doi.org/10.1016/j.dyepig.2013.06.026

Pereira, E. M., Machado, T. de B., Leal, I. C. R., Jesus, D. M., Damaso, C. R. de A., Pinto, A. V., Giambiagi-deMarval, M., Kuster, R. M., & Santos, K. R. N. dos. (2006). Tabebuia avellanedae naphthoquinones: activity against methicillin-resistant staphylococcal strains, cytotoxic activity and in vivo dermal irritability analysis. Annals of Clinical Microbiology and Antimicrobials, 5(1), 5. https://doi.org/10.1186/1476-0711-5-5

Rangel-Yagui, C. O., Hsu, H. W. L., Pessoa-Jr, A., & Tavares, L. C. (2005). Micellar solubilization of ibuprofen: influence of surfactant head groups on the extent of solubilization. Revista Brasileira de Ciências Farmacêuticas, 41(2), 237–246. https://doi.org/10.1590/S1516-93322005000200012

Sarpietro, M. G., Pitarresi, G., Ottimo, S., Giuffrida, M. C., Ognibene, M. C., Fiorica, C., Giammona, G., & Castelli, F. (2011). Interaction between drug loaded polyaspartamide-polylactide-polysorbate based micelles and cell membrane models: a calorimetric study. Molecular Pharmaceutics, 8(3), 642–650. https://doi.org/10.1021/mp100445k

Song, C. K., Yoon, I. S., & Kim, D. D. (2016). Poloxamer-based solid dispersions for oral delivery of docetaxel: Differential effects of F68 and P85 on oral docetaxel bioavailability. International Journal of Pharmaceutics, 507(1–2), 102–108. https://doi.org/10.1016/j.ijpharm.2016.05.002

Su, Y., Wang, J., & Liu, H. (2002). FTIR Spectroscopic Investigation of Effects of Temperature and Concentration on PEO−PPO−PEO Block Copolymer Properties in Aqueous Solutions. Macromolecules, 35(16), 6426–6431. https://doi.org/10.1021/ma0105284

Trubetskoy, V. (1999). Polymeric micelles as carriers of diagnostic agents. Advanced Drug Delivery Reviews, 37(1–3), 81–88. https://doi.org/10.1016/S0169-409X(98)00100-8

Van Nostrum, C. F. (2004). Polymeric micelles to deliver photosensitizers for photodynamic therapy. Advanced Drug Delivery Reviews, 56(1), 9–16.

Vilsinski, B. H. (2013). Estudos das Propriedades Físico-Químicas e Fotodinâmicas da Ftalocianina de Alumínio cloro (AlPcCl) em Sistemas Homogêneos e Encapsulada em Copolímeros Micelares Plurônicos® P-123 E F-127. Universidade Estadual de Maringá.

Wakisaka, A., Komatsu, S., & Usui, Y. (2001). Solute-solvent and solvent-solvent interactions evaluated through clusters isolated from solutions: Preferential solvation in water-alcohol mixtures. Journal of Molecular Liquids, 90(1–3), 175–184. https://doi.org/10.1016/S0167-7322(01)00120-9

Wanka, G., Hoffmann, H., & Ulbricht, W. (1994). Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules, 4145–4159.

Downloads

Publicado

2021-04-28

Como Citar

Katieli da Silva Souza Campanholi, Flávia Amanda Pedroso de Morais, Évelin Lemos de Oliveira, Santos Lima, M. R., Elza Aparecida da Silva, Expedito Leite Silva, & Wilker Caetano. (2021). INTERAÇÃO DO LAPACHOL COM NANOPLATAFORMAS MICELARES DRUG DELIVERY. Colloquium Exactarum. ISSN: 2178-8332, 13(1), 9–18. Recuperado de https://journal.unoeste.br/index.php/ce/article/view/3885