AZO-POLÍMERO MOLECULARMENTE IMPRESSO COMO ESTRATÉGIA NO DESENVOLVIMENTO DE UMA NOVA PLATAFORMA SENSORIAL PARA DETECÇÃO DE ÁCIDO ÚRICO
Palavras-chave:
Sensor eletroquímico; polímero molecularmente impresso; detecção de ácido úricoResumo
No presente trabalho foi estudado o desenvolvimento de um polímero molecularmente impresso (PMI) baseado no poli(azo-Bismarck Y) para detecção de ácido úrico. O filme PMI foi preparado pela eletropolimerização do monômero Bismarck Brown Y na presença de ácido úrico como molécula molde sobre a superfície do eletrodo de óxido de estanho dopado com flúor (FTO). O sensor PMI-poli(azo-Bismark Y) exibiu boa resposta eletroquímica, alta sensibilidade e seletividade na ligação específica ao ácido úrico. Sob as condições experimentais otimizadas, a resposta voltamétrica do sensor proposto foi linear no intervalo de concentração de 0,20 mmol L-1 a 0,60 mmol
L-1, com limite de detecção de 0,17 mmol L−1.
Downloads
Referências
ALLENDER, C. J. et al. Pharmaceutical applications for molecularly imprinted polymers. International Journal of Pharmaceutics, v. 195, n. 1–2, p. 39–43, 2000.
ANDRÉ-BARRÈS, C. et al. Comparison of diffusivities data of streptocyanine dyes by electrochemical and NMR-DOSY methods. v. 686, p. 54–57, 2012.
BARROS, L. A.; CUSTODIO, R.; RATH, S. Design of a new molecularly imprinted polymer selective for hydrochlorothiazide based on theoretical predictions using Gibbs free energy. Journal of the Brazilian Chemical Society, v. 27, n. 12, p. 2300–2311, 2016.
BLACK, C. N. et al. Uric acid in major depressive and anxiety disorders. Journal of Affective Disorders, v. 225, n. March 2017, p. 684–690, 2018.
CÉSPEDES, F.; MARTÍNEZ-FÀBREGAS, E.; ALEGRET, S. New materials for electrochemical sensing I. Rigid conducting composites. TrAC - Trends in Analytical Chemistry, v. 15, n. 7, p. 296–304, 1996.
DEHGHANI, M.; NASIRIZADEH, N.; YAZDANSHENAS, M. E. Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/electropolymerized molecular imprinted polymer. Materials Science and Engineering C, v. 96, n. December 2018, p. 654–660, 2019.
EL-RAHMAN, H. A. A. et al. Oxidative polymerization of p-aminoazobenzene in acetonitrile. A new electroactive polymer. Journal of Electroanalytical Chemistry, v. 315, n. 1–2, p. 161–174, 1991.
HJELM, J. et al. Electropolymerisation dynamics of a highly conducting metallopolymer: Poly-[Os(4′-(5-(2,2′-bithienyl))-2,2′:6′, 2″-terpyridine)2]2+. Electrochemistry Communications, v. 6, n. 2, p. 193–200, 2004.
HOSU, O. et al. Nanostructured electropolymerized poly(methylene blue) films from deep eutectic solvents. Optimization and characterization. Electrochimica Acta, v. 232, p. 285–295, 2017.
HWANG, B. J.; SANTHANAM, R.; LIN, Y. L. Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite. Electrochimica Acta, v. 46, n. 18, p. 2843–2853, 2001.
HWANG, D. et al. Analytica Chimica Acta Recent advances in electrochemical non-enzymatic glucose sensors e A review. Analytica Chimica Acta, v. 1033, p. 1–34, 2018.
KARIMIAN, N.; GHOLIVAND, M. B.; TAHERKHANI, F. Computational design and development of a novel voltammetric sensor for minoxidil detection based on electropolymerized molecularly imprinted polymer. Journal of Electroanalytical Chemistry, v. 740, p. 45–52, 2015.
LEVI, M. D. et al. Influence of ionic size on the mechanism of electrochemical doping of polypyrrole films studied by cyclic voltammetry. Electrochimica Acta, v. 42, n. 5, p. 757–769, 1997.
LI, X. G. et al. Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chemical Reviews, v. 102, n. 9, p. 2925–3030, 2002.
MERINO, E.; RIBAGORDA, M. Control over molecular motion using the cis – trans photoisomerization of the azo group. 2012.
MOTIA, S. et al. Development of a novel electrochemical sensor based on electropolymerized molecularly imprinted polymer for selective detection of sodium lauryl sulfate in environmental waters and cosmetic products. Journal of Electroanalytical Chemistry, v. 823, n. March, p. 553–562, 2018.
MUCIO, M. et al. Sensors and Actuators B : Chemical Electrochemical sensor for dodecyl gallate determination based on electropolymerized molecularly imprinted polymer. Sensors & Actuators: B. Chemical, v. 253, p. 180–186, 2017.
OLEAN-OLIVEIRA, A.; TEIXEIRA, M. F. S. Sensors and Actuators B : Chemical Development of a nanocomposite chemiresistor sensor based on π - conjugated azo polymer and graphene blend for detection of dissolved oxygen. Sensors & Actuators: B. Chemical, v. 271, n. March, p. 353–357, 2018.
PAULING, B. Y. L. A Theory of the Structure and Process of Formation of Antibodies *. v. 372, n. 6, 1940.
PEREZ-RUIZ, F.; DALBETH, N.; BARDIN, T. A Review of Uric Acid, Crystal Deposition Disease, and GoutAdvances in Therapy, 2014.
REHAN, H. H. Electrosynthesis of conducting polymer films from the azo dye methoxy red. Journal of Applied Electrochemistry, v. 30, n. 8, p. 945–951, 2000.
SEQUOIA, E.; GENIES, E. M.; TSINTAVIS, C. Redox mechanism and electrochemical polyaniline deposits behayiour of. Polymer, v. 195, p. 109–128, 1985.
TALITA, L. et al. Síntese e caracterização de MIP com fenilalanina visando sua aplicação na técnica de SPE Synthesis and characterization of MIP with Phenylalanine for their application in SPE. v. 25, n. 6, p. 596–605, 2015.
TARLEY, C. R. T.; SOTOMAYOR, M. D. P. T.; KUBOTA, L. T. Polímeros biomiméticos em química analítica. Parte 1: preparo e aplicações de MIP ("Molecularly Imprinted Polymers") em técnicas de extração e separação. Química Nova, v. 28, n. 6, p. 1076–1086, 2005.
TEIXEIRA, M. F. S.; BARSAN, M. M.; BRETT, C. M. A. Molecular engineering of a π-conjugated polymer film of the azo dye Bismarck Brown Y. RSC Adv., v. 6, n. 103, p. 101318–101322, 2016a.
TEIXEIRA, M. F. S.; BARSAN, M. M.; BRETT, C. M. A. Molecular engineering of a pi-conjugated polymer film of the azo dye Bismarck Brown Y. RSC Adv., v. 6, n. 103, p. 101318, 2016b.
TORKASHVAND, M.; GHOLIVAND, M. B.; TAHERKHANI, F. Fabrication of an electrochemical sensor based on computationally designed molecularly imprinted polymer for the determination of mesalamine in real samples. Materials Science and Engineering C, v. 55, p. 209–217, 2015.
VOLKOV, A. et al. Electrochemical polymerization of aromatic amines. IR, XPS and PMT study of thin film formation on a Pt electrode. Journal of Electroanalytical Chemistry, v. 115, n. 2, p. 279–291, 1980.
YANG, Y. et al. Materials Science & Engineering C A photoresponsive surface molecularly imprinted polymer shell for determination of trace griseofulvin in milk. Materials Science & Engineering C, v. 92, n. July, p. 365–373, 2018.
YUAN, H. et al. Serum uric acid levels and risk of metabolic syndrome: A dose-response meta-analysis of prospective studies. Journal of Clinical Endocrinology and Metabolism, v. 100, n. 11, p. 4198–4207, 2015.
ZHENG, W. et al. Electrochemical sensor based on molecularly imprinted polymer / reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine. Journal of Electroanalytical Chemistry, v. 813, n. January, p. 75–82, 2018.