A COMPARATIVE RELATION OF DISTINCT REFERENCE CROP EVAPOTRANSPIRATION MODELS FOR SOUTHERN BRAZIL
DOI:
https://doi.org/10.5747/ca.2023.v19.h528Palavras-chave:
conservation and efficient use of water in agriculture, FAO-56, empirical models, water requirement of plantsResumo
Water is one of the main limiting factors for achieving high productivity in agriculture. The hydric requirement of plants is fundamental for the dimensioning of the irrigation system and contributes to the better use of hydric resources. Moreover, the accurate computation of this element is essential for water management in agricultural systems. Nonetheless, due to the heterogeneity of different evapotranspiration estimation methods, the performance of its calculation can be considerably compromised. Accordingly, the aim of this study was to compare the methods for estimating reference evapotranspiration (ETo) by Benevides & Lopes, Camargo, Hargreaves & Samani, Jensen & Haise, Linacre, Makkink, Penman, Priestley & Taylor, Tanner & Pelton, and Turc, with the FAO-56 Penman-Monteith standard method, to evaluate the performance and accuracy of equational models. Furthermore, data from an automatic weather station belonging to the Brazilian National Institute of Meteorology (INMET), located in Palmeira das Missões, Rio Grande do Sul, Brazil, from January 1, 2020, to January 1, 2021, were used. Comparative statistical methods were utilized to express the accuracy of the models and indicate the most appropriate equations for the conditions of the selected location. Cluster analysis and Principal Component Analysis (PCA) were applied. For Palmeira das Missões, the model proposed by Hargreaves & Samani indicated the best results and was characterized as the most appropriate alternative to estimate the ETo more accurately. The method indicated the most favorable results for R2 (0.9890), d (0.9253), and r (0.9944). Furthermore, cluster and PCA analyses expressed the behavior of relationships between different mathematical models and meteorological parameters in relation to the ETo determination.
Downloads
Referências
AFZAAL, H.; FAROOQUE, A.A.; ABBAS, F.; ACHARYA, B.; ESAU, T. Computation of evapotranspiration with artificial intelligence for precision water resource management. Applied Sciences, v.10, n.5, 2020. https://doi.org/10.3390/app10051621
ALLEN, R. G.; PEREIRA, L. S.; RAES, D.; SMITH, M. Crop evapotranspiration - guidelines for computing crop water requirements. Rome: FAO, 1998. (FAO Irrigation and Drainage paper; 56).
ALTHOFF, D.; SANTOS, R.A.; BAZAME, H.C.; CUNHA, F.F.; FILGUEIRAS, R. Improvement of Hargreaves-Samani reference evapotranspiration estimates with local calibration. Water, v.11, n.11, p.1–16, 2019. https://doi.org/10.3390/w11112272
BOTTAZZI, M.; BANCHERI, M.; MOBILIA, M.; BERTOLDI, G.; LONGOBARDI, A.; RIGON, R. Comparing evapotranspiration estimates from the geoframe-prospero model with Penman–Monteith and Priestley-Taylor approaches under different climate conditions. Water, v.13, n.9, p.1–22, 2021. https://doi.org/10.3390/w13091221
ČADRO, S.; UZUNOVIĆ, M.; ŽUROVEC, J.; ŽUROVEC, O. Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina. International Soil and Water Conservation Research, v.5, n.4, p.309–324, 2017. https://doi.org/10.1016/j.iswcr.2017.07.002
CELESTIN, S.; QI, F.; LI, R.; YU, T.; CHENG, W. Evaluation of 32 simple equations against the Penman–Monteith method to estimate the reference evapotranspiration in the hexi corridor, Northwest China. Water, v.12, n.10, 2020. https://doi.org/10.3390/w12102772
DAROUICH, H.; RAMOS, T. B.; PEREIRA, L. S.; RABINO, D.; BAGAGIOLO, G.; CAPELLO, G.; SIMIONESEI, L.; CAVALLO, E.; BIDDOCCU, M. Water use and soil water balance of Mediterranean vineyards under rainfed and drip irrigation management: evapotranspiration partition and soil management modelling for resource conservation. Water, v.14, n.4, 2022. https://doi.org/10.3390/w14040554
DEBNATH, S.; ADAMALA, S.; RAGHUWANSHI, N. S. Sensitivity analysis of FAO-56 Penman-Monteith method for different agro-ecological regions of India. Environmental Processes, v.2, n.4, p.689–704, 2015. https://doi.org/10.1007/s40710-015-0107-1
DLOUHÁ, D.; DUBOVSKÝ, V.; POSPÍŠIL, L. Optimal calibration of evaporation models against Penman–Monteith equation. Water, v.13, n.11, 2021. https://doi.org/10.3390/w13111484
FERNANDES, A.L.T.; MENGUA, R.E.C.G.; MELO, G.L.; ASSIS, L.C. Estimation of reference evapotranspiration for coffee irrigation management in a producuttve region of Minas Gerais Cerrado. Coffee Science, v.13, n.4, p.426–438, 2018. https://doi.org/10.25186/cs.v13i4.1463
GHIAT, I.; MACKEY, H. R.; AL-ANSARI, T. A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water, v.13, n.8, 2021. https://doi.org/10.3390/w13182523
GURSKI, B. C.; JERSZURKI, D.; DE SOUZA, J. L. M. Alternative reference evapotranspiration methods for the main climate types of the state of Paraná, Brazil. Pesquisa Agropecuaria Brasileira, v.53, n.9, p.1003–1010, 2018. https://doi.org/10.1590/S0100-204X2018000900003
HABEEB, R.; ZHANG, X.; HUSSAIN, I.; HASHMI, M. Z.; ELASHKAR, E. E.; KHADER, J. A.; SOUDAGAR, S. S.; SHOUKRY, A. M.; ALI, Z.; AL-DEEK, F.F. Statistical analysis of modified Hargreaves equation for precise estimation of reference evapotranspiration. Tellus, Series A: Dynamic Meteorology and Oceanography, v.73, n.1, p.1–12, 2021. https://doi.org/10.1080/16000870.2021.1966869
JERSZURKI, D.; SOUZA, J. L. M.; SILVA, L. C. R. Expanding the geography of evapotranspiration: An improved method to quantify land-to-air water fluxes in tropical and subtropical regions. PLoS ONE, v.12, n.6, p.1–19, 2017. https://doi.org/10.1371/journal.pone.0180055
JO, W. J.; KIM, D. S.; SIM, H. S.; AHN, S. R.; LEE, H. J.; MOON, Y. H.; WOO, U. J.; KIM, S. K. Estimation of evapotranspiration and water requirements of strawberry plants in greenhouses using environmental data. Frontiers in Sustainable Food Systems, v.5, p.1–8, 2021. https://doi.org/10.3389/fsufs.2021.684808
LINACRE, E. T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agricultural Meteorology, v.18, n.6, p.409–424, 1977. https://doi.org/10.1016/0002-1571(77)90007-3
MAKKINK, G. F. Ekzamento de la formulo de Penman. Netherlands Journal of Agricultural Science, v.5, p.290-305, 1957. https://doi.org/10.18174/njas.v5i4.17731
PENMAN, H. L. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London: Mathematical and Physical Science, v.193, p.120-145, 1948. https://doi.org/10.1098/rspa.1948.0037
PRIESTLEY, C. H. B.; TAYLOR, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, v.100, n.2, p.81–92, 1972. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
RAZIEI, T.; PEREIRA, L. S. Estimation of ETo with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agricultural Water Management, v.121, p.1–18, 2013. https://doi.org/10.1016/j.agwat.2012.12.019
RSTUDIO®. Integrated development for R. Boston, MA: RStudio®, 2015. Available in: https://www.rstudio.com
R CORE TEAM®. R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2019. Available in: https://www.R-project.org/
SALAM, R.; ISLAM, A.R.M.T.; PHAM, Q. B.; DEHGHANI, M.; AL-ANSARI, N.; LINH, N. T .T. The optimal alternative for quantifying reference evapotranspiration in climatic sub-regions of Bangladesh. Scientific Reports, v.10, n.1, p.1–21, 2020. https://doi.org/10.1038/s41598-020-77183-y
SANTOS, M. S. N.; CASTRO, I. A; ORO, C. E. D.; ZABOT, G. L.; TRES, M. V. Reference crop evapotranspiration in distinct agricultural regions of Southern Brazil: a comparison of improved empirical models. Revista Engenharia na Agricultura, v.29, 2021. https://doi.org/10.13083/reveng.v29i1.12418
TURC, L. Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annals of Agronomy, v.12, p.13-49, 1961.
VENANCIO, L. P.; CUNHA, F. F.; MANTOVANI, E. C.; SEDIYAMA, G. C.; EUGENIO, F. C.; ALEMAN, C. C. Penman-Monteith with missing data and Hargreaves-Samani for ETo estimation in Espírito Santo state, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, v.23, n.3, p.153–159, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n3p153-159
WILLMOTT, C. J.; ROBESON, S. M.; MATSUURA, K. A refined index of model performance. International Journal of Climatology, v.32, n.13, p.2088-2094, 2012. https://doi.org/10.1002/joc.2419
ZHU, X.; LUO, T.; LUO, Y.; YANG, Y.; GUO, L.; LUO, H.; FANG, C.; CUI, Y. Calibration and validation of the Hargreaves-Samani model for reference evapotranspiration estimation in China. Irrigation and Drainage, v.68, n.4, p.822–836, 2019. https://doi.org/10.1002/ird.2350
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Colloquium Agrariae. ISSN: 1809-8215
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.