Caracterização genômica dos genes galactinol sintase (GolS) em Ipomea trifida: uma abordagem usando bioinformática

Authors

  • Sr. UNOESTE
  • Ms UNOESTE
  • Ms UNIVERSIDADE PARANAENSE
  • Ds. UNOESTE
  • Silvia Graciele Hulse de Souza Unipar

Keywords:

Bioinformática, melhoramento genético, batata-doce, família da rafinose (RFO)

Abstract

A galactinol sintase (GolS - EC 2.4.1.123) é classificada como uma enzima chave que catalisa a primeira etapa na via de síntese da família da rafinose (RFOs). Embora os genes GolS tenham sido caracterizados em diversas espécies importantes, a sua caracterização na batata-doce ainda não foi explorada. Ipomoea trifida (Kunth) G. Don (2n = 2x = 30) é atualmente descrita como um dos ancestrais mais próximos da batata-doce e considerada uma excelente espécie de cruzamento, permitindo a introgressão de genes importantes como o GolS. Este estudo teve como objetivo identificar e caracterizar in silico os genes GolS em I. trifida e compará-los com I. triloba. Identificamos nove genes GolS, cinco em I. triloba e quatro em I. trifida. Nosso estudo abrangeu vários aspectos, incluindo análise da estrutura genética, identificação de motivos, distribuição cromossômica, análise de sintenia e expressão genica. A presença de duplicações gênicas e seleção purificadora foram destacadas, sugerindo o significado evolutivo dos genes GolS nessas espécies. A análise filogenética categorizou as proteínas GolS em três grupos, refletindo potencialmente papéis funcionais distintos. Além disso, a análise de sintenia revelou relações ortólogas entre os genes GolS nas espécies estudadas e plantas relacionadas, contribuindo para a nossa compreensão da sua história evolutiva. A análise de expressão in silico revelou padrões de expressão específicos em diferentes tecidos, sugerindo papéis especializados para genes GolS em diferentes órgãos vegetais. Estas descobertas contribuem para o campo mais amplo da genética das plantas, do metabolismo de carboidrato e da agricultura, oferecendo oportunidades para o melhoramento das culturas e a produção sustentável de alimentos.

Downloads

Download data is not yet available.

Author Biographies

  • Sr., UNOESTE

    Graduando em Ciências Biológicas UNOESTE

  • Ms, UNOESTE

    Graduado no curso de ciências biológicas e Mestrando pela universidade do Oeste Paulista (UNOESTE).

  • Ms, UNIVERSIDADE PARANAENSE

    Engenheira agrônoma e doutoranda do Programa de Pos-gradução em Biotecnologia Aplicada à Agricultura.

  • Ds., UNOESTE

    Doutor e Docente do Programa de Pós-graduação em Agronomia UNOESTE.

  • Silvia Graciele Hulse de Souza, Unipar
    Biotecnologia aplicada a agricultura. Fisiologia do estresse.

References

ALI, E.; KAKAR, K.U.; SHAH, J.M.; SAAND, M.A.; HUSSAIN, N.; XUE, D.; JIANG, L. Bioinformatics study of Tocopherol biosynthesis pathway genes in Brassica rapa. International Journal of Current Microbiology and Applied Sciences, v.4, n.3, p.721-732, 2015.

ALI, H.; LIU, Y.; AZAM, S.M.; PRIYADARSHANI, S.V.G.N.; LI, W.; HUANG, X.; HU, B.; XIONG, J.; ALI, U.; QIN, Y. Genomic survey, characterization, and expression profile analysis of the SBP genes in pineapple (Ananas comosus L.). International Journal of Genomics, v.2017, 2017. https://doi.org/10.1155/2017/1032846

ALTSCHUL, S.F.; GISH, W.; MILLER, W.; MYERS, E.; W.; LIPMAN, D.J. Basic local alignment search tool. Journal of molecular biology, v.215, n.3, p.403-410, 1990. https://doi.org/10.1016/S0022-2836(05)80360-2

AUSTIN, D.F. The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. In: Exploration, maintenance, and utilization of sweetpotato genetic resources. p.27-60, 1988.

CAO, J.; SHI, F. Dynamics of arginase gene evolution in metazoans. Journal of Biomolecular Structure and Dynamics, v.30, n.4, p.407-418, 2012. https://doi.org/10.1080/07391102.2012.682207

CHOU, K.C.; SHEN, H.B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PloS one, v.5, n.6, p.e11335, 2010. https://doi.org/10.1371/journal.pone.0011335

CONANT, G.C.; WOLFE, K.H. Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast. Genetics, v.179, n.3, p.1681-1692, 2008. https://doi.org/10.1534/genetics.107.074450

DOLCIMASCULO, F.; RIBAS, A. F.; VIEIRA, L.G.E.; DOS SANTOS, T.B. A genome-wide analysis of the galactinol synthase gene family in banana (Musa acuminata). Colloquium Agrariae, p.01-11, 2018.

FALAVIGNA, V.D.S.; PORTO, D. D.; MIOTTO, Y.E.; SANTOS, H. P. D.; OLIVEIRA, P.R.D.D.; MARGIS-PINHEIRO, M.; PASQUALI, G.; REVERS, L.F. Evolutionary diversification of galactinol synthases in Rosaceae: adaptive roles of galactinol and raffinose during apple bud dormancy. Journal of Experimental Botany, v.69, n.5, p.1247-1259, 2018. https://doi.org/10.1093/jxb/erx451

FAN, Y.; YU, M.; LIU, M.; ZHANG, R.; SUN, W.; QIAN, M.; DUAN, H.; CHANG, W.; MA, J.; QU, C., ZHANG, K.; LEI, B.; LU, K. Genome-wide identification, evolutionary and expression analyses of the GALACTINOL SYNTHASE gene family in rapeseed and tobacco. International Journal of Molecular Sciences, v.18, n.12, p.2768, 2017. https://doi.org/10.3390/ijms18122768

FILIZ, E.; OZYIGIT, I.I.; VATANSEVER, R. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon. Computational Biology and Chemistry, v.58, p.149-157, 2015. https://doi.org/10.1016/j.compbiolchem.2015.07.006

GÓIS, E.H.B.; MENEGAZZO, R.F.; DOS SANTOS, T.B.; DE SOUZA, S.G.H. Identification, evolutionary and expression analysis of the galactinol synthase (GolS) genes in Panicum virgatum L. and Panicum hallii: An in silico approach. Plant Gene, v.24, p.100262, 2020. https://doi.org/10.1016/j.plgene.2020.100262

HU, B.; JIN, J.; GUO, A.Y.; ZHANG, H.; LUO, J.; GAO, G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, v.31, n.8, p.1296-1297, 2015. https://doi.org/10.1093/bioinformatics/btu817

HUANG, Z.; ZHONG, X.J.; HE, J.; JIN, S.H.; GUO, H.D.; YU, X.F.; ZHOU, Y.J.; LI, X.; MA, M.D.; CHEN, Q.B.; LONG, H. Genome-wide identification, characterization, and stress-responsive expression profiling of genes encoding LEA (late embryogenesis abundant) proteins in Moso bamboo (Phyllostachys edulis). PloS one, v.11, n.11, p.e0165953, 2016. https://doi.org/10.1371/journal.pone.0165953

JARRET, R. L.; GAWEL, N.; WHITTEMORE, A. Phylogenetic relationships of the sweetpotato [Ipomoea batatas (L.) Lam.]. Journal of the American Society for Horticultural Science, v.117, n.4, p.633-637, 1992. https://doi.org/10.21273/JASHS.117.4.633

JIANGTAO, C.; YINGZHEN, K.; QIAN, W.; YUHE, S.; DAPING, G.; JING, L.V.; GUANSHAN, L. Mapgene2chrom, a tool to draw gene physical map based on perl and svg languages. Hereditas, v.37, n.1, p.91-97, 2015. https://doi.org/10.16288/j.yczz.2015.01.013

JIANG, Q.; CHEN, A.; LV, Z.; DONG, Z.; WANG, L.; MENG, X.; FENG, Y.; WAN, Y.; SU, C.; CUI, Y.; XU, W.; HOU, H.; ZHU, X. Systematic analysis of galactinol synthase and raffinose synthase gene families in potato and their expression patterns in development and abiotic stress responses. Genes, v.14, n.7, p.1344, 2023. https://doi.org/10.3390/genes14071344

KIM, J.H.; HOSSAIN, A.M.; KIM, N.H.; LEE, D.H.; LEE, H.J. Identification and functional characterization of the GALACTINOL SYNTHASE (MoGolS1) gene in Melissa officinalis plants. Journal of Applied Biological Chemistry, v. 54, n.4, p. 244-251, 2011. http://dx.doi.org/10.3839/jabc.2011.040

KONING, R.; WILS, G.E.; KIEKENS, R.; DE VUYST, L.; ANGENON, G. Impact of drought and salt stress on galactinol and raffinose family oligosaccharides in common bean (Phaseolus vulgaris). AoB Plants, v.15, n.4, p.plad038, 2023. https://doi.org/10.1093/aobpla/plad038

KUMAR, S.; STECHER, G.; TAMURA, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, v.33, n.7, p.1870-1874, 2016. https://doi.org/10.1093/molbev/msw054

LAHUTA, L.B.; PLUSKOTA, W.E.; STELMASZEWSKA, J.; SZABLIŃSKA, J. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.). Journal of plant physiology, v.171, n.14, p.1306-1314, 2014. https://doi.org/10.1016/j.jplph.2014.04.012

LI, R.; YUAN, S.; HE, Y.; FAN, J.; ZHOU, Y.; QIU, T.; LIN, X.; YAO, Y.; LIU, J.; FU, S.; HU, X.; GUO, J.; Genome-wide identification and expression profiling analysis of the galactinol synthase gene family in cassava (Manihot esculenta Crantz). Agronomy, v.8, n.11, p.250, 2018. https://doi.org/10.3390/agronomy8110250

MARTINS, C.P.; FERNANDES, D.; GUIMARÃES, V.M.; DU, D.; SILVA, D.C.; ALMEIDA, A.A.F.; GMITTER JR.,F.G.; OTONI, W.C.; COSTA, M.G. Comprehensive analysis of the GALACTINOL SYNTHASE (GolS) gene family in citrus and the function of CsGolS6 in stress tolerance. Plos one, v.17, n.9, p.e0274791, 2022. https://doi.org/10.1371/journal.pone.0274791

MEYER, T.; VIGOUROUX, A.; AUMONT-NICAISE, M.; COMTE, G.; VIAL, L.; LAVIRE, C.; MORÉRA, S. The plant defense signal galactinol is specifically used as a nutrient by the bacterial pathogen Agrobacterium fabrum. Journal of Biological Chemistry, v. 293, n. 21, p. 7930-7941, 2018. https://doi.org/10.1074/jbc.RA118.001856

MUKHERJEE, S.; SENGUPTA, S.; MUKHERJEE, A.; BASAK, P.; MAJUMDER, A. L. Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice. Planta, v.249, p.891-912, 2019. https://doi.org/10.1007/s00425-018-3046-z

NISHIZAWA, A.; YABUTA, Y.; SHIGEOKA, S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant physiology, v.147, n.3, p.1251-1263, 2008. https://doi.org/10.1104/pp.108.122465

PANIKULANGARA, T.J.; EGGERS-SCHUMACHER, G.; WUNDERLICH, M.; STRANSKY, H.; SCHÖFFL, F. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant physiology, v.136, n.2, p.3148-3158, 2004. https://doi.org/10.1104/pp.104.042606

SALVI, P.; KAMBLE, N.U.; MAJEE, M. Ectopic over-expression of ABA-responsive Chickpea galactinol synthase (CaGolS) gene results in improved tolerance to dehydration stress by modulating ROS scavenging. Environmental and Experimental Botany, v.171, p.103957, 2020. https://doi.org/10.1016/j.envexpbot.2019.103957

SANTOS, T.B.; BUDZINSKI, I.G.; MARUR, C.J.; PETKOWICZ, C.L.; PEREIRA, L.F.; VIEIRA, L.G. Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiology and Biochemistry, v.49, n.4, p.441-448, 2011. https://doi.org/10.1016/j.plaphy.2011.01.023

SANTOS, T.B.D.; LIMA, R.B.D.; NAGASHIMA, G.T.; PETKOWICZ, C.L.D.O.; CARPENTIERI-PÍPOLO, V.; PEREIRA, L.F.P.; DOMINGUES, D.S.; VIEIRA, L.G.E. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genetics and Molecular Biology, v.38, p.182-190, 2015. https://doi.org/10.1590/S1415-475738220140171

SANTOS, T.B.; VIEIRA, L.G.E. Involvement of the galactinol synthase gene in abiotic and biotic stress responses: A review on current knowledge. Plant Gene, v.24, p.100258, 2020. https://doi.org/10.1016/j.plgene.2020.100258

SENGUPTA, S.; MUKHERJEE, S.; PARWEEN, S.; MAJUMDER, A.L. Galactinol synthase across evolutionary diverse taxa: functional preference for higher plants? FEBS letters, v.586, n.10, p.1488-1496, 2012. https://doi.org/10.1016/j.febslet.2012.04.003

SPRENGER, N.; KELLER, F. Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. The Plant Journal, v.21, n.3, p.249-258, 2000. https://doi.org/10.1046/j.1365-313x.2000.00671.x

TAJI, T.; SEKI, M.; SATOU, M.; SAKURAI, T.; KOBAYASHI, M.; ISHIYAMA, K.; NARUSAKA, Y.; NARUSAKA, M.; ZHU, J.K. SHINOZAKI, K. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology, v.135, n.3, p.1697-1709, 2004. https://doi.org/10.1104/pp.104.039909

THOMPSON, J.D.; HIGGINS, D.G.; GIBSON, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, v.22, n.22, p.4673-4680, 1994. https://doi.org/10.1093/nar/22.22.4673

WU, S.; LAU, K.H.; CAO, Q.; HAMILTON, J.P.; SUN, H.; ZHOU, C.; ESERMAN, L.; GEMENET, D.C.; OLUKOLU, B.A.; WANG, H.Y.; CRISOVAN, E.; GODDEN, G.T.; JIAO, J.; WANG, X.; MERCY, K.; MANRIQUE-CARPINTERO, N.; VAILLANCOURT, B.; WIEGERT-RININGER, K.; YANG, X.S.; BAO, K.; SCHAFF, J.; KREUZE, J.; GRUNEBERG, W.; KHAN, A.; GHISLAIN, M.; MA, D.F.; JIANG, J.M.; MWANGA, R.; LEEBENS-MACK, J.; COIN, L.; YENCHO, C.; ROBIN, B.R.; FEI, Z. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, v.9, n.1, p.4580, 2018. https://doi.org/10.1038/s41467-018-06983-8

YOU, J.; WANG, Y.; ZHANG, Y.; DOSSA, K.; LI, D.; RONG, Z.; WANG, L.; ZHANG, X. Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame. Scientific Reports, v.8, n.1, p.4331, 2018. https://doi.org/10.1038/s41598-018-22585-2

ZHANG, Z.; LI, J.; ZHAO, X.Q.; WANG, J.; WONG, G.K.S.; YU, J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics, proteomics & bioinformatics, v.4, n.4, p. 259-263, 2006. https://doi.org/10.1016/S1672-0229(07)60007-2

ZHOU, L.; BAWA, R.; HOLLIDAY, J. A. Exome resequencing reveals signatures of demographic and adaptive processes across the genome and range of black cottonwood (Populus trichocarpa). Molecular Ecology, v.23, n.10, p.2486-2499, 2014. https://doi.org/10.1111/mec.12752

ZHOU, Y.; LIU, Y.; WANG, S.; SHI, C.; ZHANG, R.; RAO, J.; Wang, X.; GU, X.; WANG, Y.; LI, D.; WEI, C. Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors. Journal of Agricultural and Food Chemistry, v.65, n.13, p.2751-2759, 2017. https://doi.org/10.1021/acs.jafc.7b00377

Additional Files

Published

2024-03-12

How to Cite

Caracterização genômica dos genes galactinol sintase (GolS) em Ipomea trifida: uma abordagem usando bioinformática. (2024). Colloquium Agrariae. ISSN: 1809-8215, 20(1), e244768. https://journal.unoeste.br/index.php/ca/article/view/4768

Most read articles by the same author(s)