CHARACTERIZATION OF THE ANTAGONISM OF THE MYCORRHIZAL FUNGUS Waitea circinata AGAINST Magnaporthe oryzae, Cochliobolus miyabeanus, Monographella albescens AND Sarocladium oryzae RICE PATHOGENS

Autores

  • Jacqueline Carvalho UFG
  • Amanda Chaibub UFG
  • Kellen Sousa UFG
  • Denise Brito UFG
  • Carlos Silva UFG
  • Priscilla Moller UFG
  • Marlon Pereira
  • Fabrícia Faria UFG
  • Marta Cristina Filippi EMBRAPA
  • Leila Garcês de Araújo Universdade Federal de Goiás

Palavras-chave:

brusone do arroz, controle biológico, fungo micorrízico, enzimas líticas, metabólitos voláteis

Resumo

A produção de arroz é afetada por patógenos importantes como Magnaporthe oryzae, Cochliobolus miyabeanus, Monographella albescens e Sarocladium oryzae, e fungos micorrízicos de orquídeas podem contribuir para o biocontrole dessas doenças. O objetivo deste estudo foi caracterizar os mecanismos de antagonismo de W. circinata contra patógenos do arroz. O ácido indolacético (AIA) e as enzimas líticas de W. circinata foram quantificadas. A eficácia do bioagente e seus metabólitos foi avaliada in vitro. O antagonismo in vivo contra a brusone do arroz também foi investigado. Waitea circinata produziu AIA (2,3 µg ml-1), celulase e polifenol oxidase em teste qualitativo. Glucanase, quitinase e protease também foram produzidas em cultura com paredes celulares e em co-cultura com patógenos para explicar a antibiose. W. circinata atua no antagonismo direto por antibiose e metabólitos voláteis. A suspensão micelial reduziu a germinação de conídios de M. oryzae, a formação de apressórios e a brusone do arroz em 61, 82 e 84%, respectivamente. W. circinata, um bioagente único, controla quatro patógenos do arroz. Os resultados podem contribuir para novas formulações contendo este fungo, enzimas, bem como seus metabólitos voláteis.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Agrofit, 2021. The Agrofit Phytosanitary pesticide systems. http://extranet.agricultura.gov.br/agrofit_cons/principal_agrofit_cons.

Almeida FB, Cerqueira FM., Silva RN, Ulhoa CJ, 2007. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnol Lett. DOI: 10.1007/s10529-007-9372-z.

Bozdogan AM, 2014. Assessment of total risk on non-target organisms in fungicide application for agricultural sustainability. Sustainability. DOI: 10.3390/su6021046.

Bradford MM, 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. DOI: 10.1006/abio.1976.9999.

Carvalho JCB, Chaibub AA, Sousa KCI, Brito DC, Filippi MCC, Kato L, Araújo LG, 2021. Efficiency of a new Waitea circinata extract against rice pathogens. Pesq Agropec Trop. DOI: 10.1590/1983-40632021v5166916.

Carvalho JCB, Sousa KCI, Brito DC, Chaibub AA, Luzini AP, Côrtes MVCB, Filippi MCC, Kato L, Vaz BG, Costa HB, Romão W, Araújo LG, 2015. Biocontrol potential of Waitea circinata, an orchid mycorrhizal fungus, against the rice blast fungus. Trop Plant Pathol. DOI: 10.1007/s40858-015-0042-8.

Cattelan AJ, Hartel PG, Fuhrmann JJ, 1999. Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Am J. DOI: 10.2136/sssaj1999.6361670x.

Chaibub AA, Carvalho JCB, Silva CS, Collevatti RG, Gonçalves FJ, Côrtes MVCB, Filippi M CC, Faria FP, Lopes DCB, Araújo LG, 2016. Defence responses in rice plants in prior and simultaneous applications of Cladosporium sp. during leaf blast suppression. Environ Sci Pollut Res. DOI: 10.1007/s11356-016-7379-5.

Chaibub AA, Sousa TP, Araújo LG, Filippi MCC, 2019a. Molecular and morphological characterization of rice phylloplane fungi and determination of the antagonistic activity against rice pathogens. Microbiol Res. DOI: 10.1016/j.micres.2019.126353.

Chaibub AA, Sousa TP, Araújo LG, Filippi MCC, 2019b. Cladosporium cladosporioides C24G modulates gene expression and enzymatic activity during leaf blast suppression in rice plants. J Plant Growth Regul. DOI: 10.1007/s0034 4-019-10052 -9.

Chaibub AA, Sousa TP, Oliveira MIS, Arriel-Elias MT, Araújo LG, Filippi MCC, 2020. Efficacy of Cladosporium cladosporioides C24G as a multifunctional agent in upland rice in agroecological systems. Int J Plant Prod. DOI: 10.1007/s42106-020-00097-2.

Chakrabarti NK, 2001. Epidemiological and disease management of brown spot of rice in India. In: Major Fungal Diseases of Rice: Recent Advances; Sreenivasaprasad S, Johnson R (eds.). pp: 293-306. Springer, Dordrecht.

Dellaporta SL, Wood J, Hicks JB, 1983. A Plant DNA Minipreparation: Version II. Plant Mol Biol Report. DOI: 10.1007/BF02712670.

Filippi MCC, Prabhu AS, 2001. Phenotypic virulence analysis of Pyricularia grisea isolates from Brazilian upland rice cultivars. Pesq Agropec Bras. DOI: 10.1590/S0100-204X2001000100004.

Geraldine AM, Lopes FAC, Carvalho DDC, Barbosa ET, Rodrigues AF, Brandao RS, Ulhoa CJ, Junior ML, 2013. Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biol Control. DOI: 10.1016/j.biocontrol.2013.09.013.

Gonçalves FJ, Araújo LG, Silva GB, Filippi MCC, 2012. Controle químico da brusone em arroz de terras altas: efeitos nos fungos não alvos do filoplano. Pesq Agropec Trop. DOI: 10.1590/S1983-40632012000100011.

Howard RJ, Valent B, 1996. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol. DOI: 10.1146/annurev.micro.50.1.491.

Lorito M, Woo SL, Harman GE, Monte E, 2010. Translational research on Trichoderma: from’ Omics to the field. Annu Rev Phytopathol. DOI: 10.1146/annurev-phyto-073009-114314.

Mia MAT, Rahman M, Pearce D, Holderness M, 2001. Effect of seed borne Bipolaris oryzae on seed germination and disease development in the field. Bangladesh J Pl Pathol 17: 59-62.

Mosquera-Espinosa AT, Bayman P, Prado GA, Gomez-Carabali A, Otero JT, 2013. The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia, DOI: 10.3852/12-079.

Mukherjee P K, Horwitz B A, Herrera-Estrella A, Schmoll M, Kenerley CM, 2013. Trichoderma Research in the Genome Era. Annu Rev Phytopathol. DOI: 10.1146/annurev-phyto-082712-102353.

Nalley L, Tsiboe F, Durand-Morat A, Shew A, Thoma G, 2016. Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS ONE. DOI: 10.1371/journal.pone.0167295.

Nascimento FA, Alves AA, Nunes HF, Miziara F, Parise MR, Silva DM, 2020. Cultivated areas and rural workers’ behaviour are responsible for the increase in agricultural intoxications in Brazil? Are these factors associated? Environ Sci Pollut Res. DOI: 10.1007/s11356-020-09988-3.

Notteghem JL, 1981. Cooperative experiment on horizontal resistance to rice blast. In: BLAST and upland rice: report and recommendations from the meeting for international collaboration in upland rice improvement; International Rice Research Institute (eds.). (pp.43–51). IRRI, Los Baños.

Oliveira AG, Junior AFC, Dos Santos GR, Miller LO, Chagas LFB, 2012. Potencial de solubilização de fosfato e produção de AIA por Trichoderma spp. RVADS. DOI: 10.18378/rvads.v7i3.1338.

Ou SH, 1985. Rice diseases. Commonwealth Mycological Institute, Kew, UK. 380 pp.

Prabhu AS, Filippi MCC, Silva GB, Silva-Lobo VL, Morais OP, 2009. An unprecedented outbreak of rice blast on a newly released cultivar BRS Colosso in Brazil. In: Advances in genetics, genomics and control of rice blast; Wang GL, Valent B (eds.). pp: 257-267. Springer, Netherlands.

Qualhato TF, Lopes FA, Steindorff AS, Brandão RS, Jesuino RS, Ulhoa CJ, 2013. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett. DOI: 10.1007/s10529-013-1225-3.

Ramos AC, Martins MA, Façanha AR, 2005. Atividade ATPásica e pirofosfatásica em microssomos de raízes de milho colonizadas com fungos micorrízicos arbusculares. Rev Bras Ciênc Solo. DOI: 10.1590/S0100-06832005000200006.

Rasmussen HN, Rasmussen FN, 2009. Orchid mycorrhiza: implications of a mycophagous life style. Oikos. DOI: 10.1111/j.1600-0706.2008.17116.x.

Ruiz-Herrera J, Ortiz-Castellanos L, 2019. Cell wall glucans of fungi: a review. The Cell Surface. DOI: 10.1016/j.tcsw.2019.100022.

Sakthivel N, 2001. Sheath rot disease of rice: current status and control strategies. In: Major Fungal Diseases of Rice: Recent Advances; Sreenivasaprasad S, Johnson R (eds.). pp: 271-283. Springer, Dordrecht.

Sousa KCI, Araújo LG, Silva CS, Carvalho JCB, Sibov ST, Gonçalves LA, Pereira MC, Gonçalves FJ, Filippi MCC, 2019. Seed germination and development of orchid seedlings (Cyrtopodium saintlegerianum) with fungi. Rodriguésia. DOI: 10.1590/2175-7860201970004.

Sousa TP, Souza ACA, Filippi MCC, Lanna AC, Cortês MV, Pinheiro HA, Silva GB, 2018. Bioagents and silicon promoting fast early upland rice growth. Environ Sci Pollut Res. DOI: 10.1007/s1135 6-017-0753-0.

Strauss M, Jolly N, Lambrechts M, Van Rensburg P, 2001. Screening for the production of extracellular hydrolytic enzymes by non‐Saccharomyces wine yeasts. J Appl Microbiol. DOI: 10.1046/j.1365-2672.2001.01379.x.

van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A, 2018. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. DOI: 10.1007/s10526-017-9801-4.

Yeh CM, Chung K, Liang CK, Tsai WC, 2019. New insights into the symbiotic relationship between orchids and fungi. Appl Sci. DOI: 10.3390/app9030585.

White TJ, Bruns T, Lee S, Taylor J, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications; Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.). pp: 315-322. Academic Press, New York.

Zelmer CD, Cuthbertson L, Currah RS, 1996. Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience. DOI: 10.1007/BF02461001.

Downloads

Publicado

2022-05-16

Como Citar

CHARACTERIZATION OF THE ANTAGONISM OF THE MYCORRHIZAL FUNGUS Waitea circinata AGAINST Magnaporthe oryzae, Cochliobolus miyabeanus, Monographella albescens AND Sarocladium oryzae RICE PATHOGENS. (2022). Colloquium Agrariae. ISSN: 1809-8215, 18(2), 1-14. https://journal.unoeste.br/index.php/ca/article/view/4187