CARBON AND PHOSPHORUS BIOGEOCHEMICAL CYCLES IN NATIVE FOREST AND HORTICULTURAL AREAS IN THE METROPOLITAN REGION OF CURITIBA, BRAZIL

Autores

  • Tatiana Suzin Lazeris Universidade Federal do Paraná - UFPR
  • Jéssica Pereira de Souza Universidade Federal do Paraná - UFPR
  • Fabiane Machado Vezzani Universidade Federal do Paraná - UFPR
  • Caroline Lima de Matos Universidade Federal do Paraná - UFPR
  • Glaciela Kaschuk Universidade Federal do Paraná https://orcid.org/0000-0002-8993-6563

Palavras-chave:

bactérias solubilizadoras de P; uso intensivo do solo; matéria orgânica do solo; produção de hortaliças.

Resumo

Este estudo foi conduzido para verificar se as diferentes frações de fosfato do solo afetam a biomassa microbiana do solo Amostras de solo foram coletadas em áreas de floresta nativa e horticultura, em quatro municípios da Região Metropolitana de Curitiba, Brasil, e avaliadas quanto a: carbono (C), nitrogênio (N) e fósforo (P) da biomassa microbiana (MBC , MBN e MBP, respectivamente), carbono orgânico total (TOC), nitrogênio total (TN), fósforo total (TP), fósforo inorgânico (iP), fósforo orgânico (oP) e fósforo disponível (aP), As suspensões de solo diluídas em 10-4 foram espalhadas em placas e as bactérias solubilizadoras de fosfato (PSB) foram contadas. As análises mostraram que os solos das áreas de horticultura acumularam 43% a mais de TP enquanto perderam 23% de TOC e 19% de TN em comparação com as áreas nativas. 69% do TP nas áreas nativas era orgânico (oP) enquanto 59% do TP nas áreas de horticultura era inorgânico (iP). As áreas de horticultura apresentaram menor número de unidades formadoras de colônias de PSB do que as áreas nativas. PSB foi positivamente correlacionado com a razão de MBC para TOC (qMic), que por sua vez, foi negativamente correlacionado com TOC e TN. Mudanças na fração de oP do solo sugeriram uma mudança na estrutura bacteriana da comunidade do solo e nos valores de biomassa microbiana do solo, o que pode ter contribuído para reduzir a material orgânica do solo nas áreas de horticultura.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

ANDERSON, J.P.E.; DOMSCH, K.H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry, v. 10, p. 215-221, 1978.

BALOTA, E.L.; ANDRADE, D.S.; COLOZZI-FILHO, A.; DICK R.P. Microbial biomass in soils under different tillage and crop rotation system. Biology Fertility of Soils, v. 38, p. 15-20, 2003.

BARTLETT, R.J.; ROSS, D.N. Colorimetric determination of Biology and Fertility Soils. v. oxidizable carbon in acid soil solutions. Soil Science American Journal, v. 52, p. 1191-1192, 1988.

BREMNER, J.M. Inorganic forms of nitrogen. In: Black CB et al. Methods of soil analysis, p. 1149-1178. American Society of Agronomy, Madison, 1965.

BROOKES, P.C.; LANDMAN, A.; PRUDENT, G.; JENKINSON, D.SChloroform fumigation and the release of soil nitrogen: A rapid direct estraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, v. 17, p. 837-842, 1985.

BROOKES, P.C.; POWLSON, D.S.; JENKINSON, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry, v. 14, p. 319-329, 1982.

EHLERS, K.; BAKKEN, L.R.; FROSTEGÅRD, Å.; FROSSARD, E.; BÜNEMANN, E.K. Phosphorus limitation in a Ferralsol: Impact on microbial activity and cell internal P pools. Soil Biology & Biochemistry, v. 42, p. 558-566, 2010.

FEIJE, F.; ANGER, V. Spot tests in inorganic analyses. Analitical Chimica Acta, v. 149, p. 363-367, 1972.

GEE, G.W.; BAUDER, J.W. Particle-size analysis. In Klute A (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron Monogr 9. ASA and SSSA. Madison. WI, p. 383-411, 1986.

GERKE, J. Phytate (Inositol Hexakisphosphate) in soil and phosphate acquisition from inositol phosphates by higher plants. A Review. Plant Science Journal, v. 4, p. 253-266, 2015.

GLICK, B.R. Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation. Scientifica, ID 963401, 15 pages.

HARTMAN, W.H.; RICHARDSON, C.J. 2013. Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): Is there a biological stoichiometry of soil microbes? Plos One, v. 8, e57127, 2012.

HEUCK, C.; WEIG, A.; SPOHN, M. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology & Biochemistry, v. 85, p. 119-129, 2015.

HOFFLAND, E.; FINDENEGG, G.R.; NELEMANS, J.A. Solubilization of rock phosphate by rape II. Local root exudation of organic acids as a response to P-starvation. Plant and Soil, v. 113, p. 161-165, 1989.

INSAM, H.; DOMSCH, K.H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbial Ecology, v. 15, p. 177-188, 1988.

IPARDES – Instituto Paranaense de Desenvolvimento Economico e Social, Leituras regionais: mesorregiões geográficas paranaenses: sumário executivo. Instituto Paranaense de Desenvolvimento Econômico e Social. IPARDES, Curitiba. 34 pp. 2004. Retrieved from: http://www.ipardes.gov.br/biblioteca/docs/leituras_reg_sumario_executivo.pdf. Available in 12 September 2019.

KAFLE, A.; COPE. K.R.; RATHS, R.; YAKHA, J.K.; SUBRAMANIAN, S.; BÜCKING, H.; GARCIA, K. Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agronomy, v. 9, p. 127, 2019.

KASCHUK, G.; ALBERTON, O.; HUNGRIA, M. Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biology & Biochemistry, v. 42, p. 1-13, 2010.

KASCHUK, G.; ALBERTON, O.; HUNGRIA, M. Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: inferences to improve soil quality. Plant and Soil, v. 338, p. 467-481, 2011.

KATZNELSON, H.; BOSE, B. Metabolic activity and phosphate-dissolving capability by of bacterial isolates from wheat roots, rhizosphere and non rizosphere soil. Canadian Journal of Microbiology, v. 5, p. 79-85, 1959.

LI, J.; LI, Z.; WANG, F.; ZOU, B.; CHEN, Y.; ZHAO, J.; MO, Q.; LI, Y.; LI, X.; XIA, H. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biology and Fertility Soils, v. 51, p. 207-215, 2015.

MARANGUIT, D.; GUILLAUME, T.; KUZYAKOV, Y. Land-use change affects phosphorus fractions in highly weathered tropical soils. Catena, v. 149, p. 385-393, 2017.

MURPHY, J.; RILEY, J.P. A modified single solution method for the determination of phosphate in natural waters. Analytical Chimica Acta, v. 27, p. 31-36, 1962.

NIU, Y.F.; CHAI, R.S.; JIN, G.L.; WANG, H.; TANG, C.X.; ZHANG, Y.S. Responses of root architecture development to low phosphorus availability: a review. Annals of Botany, v. 112, p. 391-408, 2013.

OLSEN, S.R.; SOMMERS, L.E. Phosphorus. In: Page, A.L., Miller, R.H., Keeney, Q.R. (Eds.) Methods of soil analysis. Chemical and microbiological properties. SSSA, Madison. p.403-430, 1982.

RAMOS, M.R.; FAVARETTO, N.; DIECKOW, J.; DEDECK. R.A.; VEZZANI, F.M.; ALMEIDA, L.; SPERRIN, M. Soil, water and nutrient loss under conventional and organic vegetable production managed in small farms versus forest system. Journal of Agronomy Rural Development in the Tropics, v. 115, p. 31-40, 2014.

RICHARDSON, A.E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology, v. 28, p. 897-906, 2001.

RICHARDSON, A.E.; SIMPSON, R.J. Soil microrganisms mediating phosphosrus availability. Plant Physiology, v. 156, p. 989-996, 2011.

RStudio Team RStudio: Integrated Development for R. RStudio. Inc.. Boston. MA URL http://www.rstudio.com/, 2016.

SANTOS, H.G.; JACOMINE, P.K.T.; ANJOS, L.H.C.; OLIVEIRA, V.A.; LUMBRERAS, J.F.; COELHO, M.R.; ALMEIDA, J.A.; ARAÚJO-FILHO, J.C.; OLIVEIRA, J.B.; CUNHA, T.J.F. Sistema Brasileiro de Classificação de Solos. Brasília, Embrapa, 2018.

SARKER, J.R.; SINGH, B.P.; DOUGHERTY, W.J.; FANG, Y.; BADGERYC, W.; HOYLE, F.C.; DALAL, R.C.; COWIE, A.L. Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems. Soil Tillage Research, v. 175, p. 71-81, 2018.

SEAB - Secretaria da Agricultura e do Abastecimento do Estado do Paraná. Valor bruto da produção rural paranaense. SEAB/DERAL, Curitiba. 2016 Retrieved from: http://www.agricultura.pr.gov.br/modules/conteudo/conteudo.php?conteudo=156. Available in 12 September 2019.

SHARMA, S.B.; SAYYED, R.Z.; TRIVEDI, M.H.; GOBI, T.A. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2, p. 587, 2013.

SMITH, S.E.; JAKOBSEN, I.; GRØNLUND, M.; SMITH, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, v. 156, p. 1050-1057, 2011.

SPOHN, M.; CHODAK, M. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils. Soil Biology & Biochemistry, v. 81, p. 128-133, 2015.

SPOHN, M.;KUZYAKOV, Y. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry, v. 61, p. 69-75, 2013.

USDA-NRCS - United States Department of Agriculture – Natural Resources Conservation Service. Soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, Version 3, United States Department of Agriculture, Washington, DC, USA, 693 pp, 1996.

VANCE, E.D.; BROOKES, P.C.; JENKINSON, D.S. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, v. 19, p. 703-707, 1987.

VEZZANI, F.M.; GRAIG, A.; MEENKEN, E.; GILLESPIE, R.; PETERSON, M.; BEARE, M.H. The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil Tillage Research, v. 175, p. 139-149. 2018.

YAO, Q.; LI, Z.; SONG, Y.; WRIGHT, S.J.; GUO, X.; TRINGE, S.G.; TFAILY, M.M.; PAŠA-TOLIĆ, L.; HAZEN, T.C.; TURNER, B.L.; MAYES, M.A.; PAN, C. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology Evolution, v. 3, p. 499-509. 2018.

YUJI, A.; SPARKS, D.L. ATR–FTIR Spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface. Journal of Colloids. Interface Science, v. 241, p. 317–326. 2001.

YUN, S.J.; KAEPPLER, S.M. Induction of maize acid phosphatase activities under phosphorus starvation. Plant and Soil, v. 237, p. 109-115. 2001.

ZHU, J.; LI, M.; WHELAN, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Journal of Science Total Environment, v. 612, p. 522-537. 2018.

Downloads

Publicado

2021-05-25

Como Citar

CARBON AND PHOSPHORUS BIOGEOCHEMICAL CYCLES IN NATIVE FOREST AND HORTICULTURAL AREAS IN THE METROPOLITAN REGION OF CURITIBA, BRAZIL. (2021). Colloquium Agrariae. ISSN: 1809-8215, 17(3), 1-11. https://journal.unoeste.br/index.php/ca/article/view/3917