Trichoderma asperellum AND RHIZOBACTERIA AS AFFECTING BIOMASS ACCUMULATION AND GAS EXCHANGE OF LOWLAND RICE

Autores

  • Israel Mendes Sousa Universidade Federal de Goiás
  • Adriano Stephan Nascente Embrapa Arroz e Feijão
  • Marta Cristina Corsi de Filippi Embrapa Arroz e Feijão
  • Anna Cristina Lanna Embrapa Arroz e Feijão

Palavras-chave:

microrganismos associados com arroz; Oryza sativa; rizobactérias promotoras de crescimento em plantas; desenvolvimento sustentável.

Resumo

Rice the main source of energy to maintain the metabolism for almost four billion people worldwide. Rice plants treated with multifunctional microorganisms may be a good way for sustainable improvement of crop grain yield. Aimed study the effect of types and ways of microorganisms application in tropical lowland rice production, evaluated by biomass production and gas exchange. The greenhouse trial was in a completely randomized design, in factorial scheme 7 x 3 + 1, with four replication. Treatments were the combination of seven microorganisms: Bacillus sp. (BRM32109 e BRM32110); Pseudomonas fluorescens (BRM32111); Pseudomonas sp. (BRM32112); Burkholderia pyrrocinia (BRM32113); Serratia sp. (BRM32114) and Trichoderma asperellum pool (UFRA.T06 + UFRA.T09 + UFRA.T12 + UFRA.T52), with three forms of application (1. microbiolized seed; 2. microbiolized seed + soil drenched with microorganism at eight and 15 days after sowing (DAS) and 3. microbiolized seed + microorganism spray plant at eight and 15 DAS). Microbiolized seed was the best form of application, which allowed highest instantaneous carboxylation efficiency and yield of biomass production in lowland rice. Rhizobcteria BRM32114, followed by BRM32111, BRM32112 and fungi T. asperellum improved, an average, 17% in instantaneous carboxylation efficiency and 20% in dry shoot biomass production of lowland rice compared to the control plants.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

BABALOLA, O. O. Beneficial bacteria of agricultural importance. Biotechnology Letters, v. 32, n. 11, p. 1559-1570, 2010. https://doi.org/10.1007/s10529-010-0347-0

BAL, H. B.; NAYAK, L.; DAS, S.; ADHYA, T. K. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and Soil, v. 366, n. 1-2, p. 93-105, 2013. https://doi.org/10.1007/s11104-012-1402-5

BORÉM, A.; RANGEL, P. H. N. Arroz do plantio à colheita. Viçosa: Editora UFV, 2015.

BROTMAN, Y.; GUPTA, K. J.; VITERBO, A. Trichoderma. Current Biology, v. 20, n. 9, p. 390-391, 2012. https://doi.org/10.1016/j.cub.2010.02.042

BUCKLEY, T. N. How do stomata respond to water status?. New Phytologist, v. 224, n. 1, p. 21-36, 2019. https://doi.org/10.1111/nph.15899

COMPANHIA NACIONAL DE ABASTECIMENTO (CONAB). Acompanhamento da safra brasileira de grãos. Brasília: CONAB, 2021.

COUSINS, A. B.; MULLENDORE, D. L.; SONAWANE, B. V. Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants. The Plant Journal, v. 101, n. 4, p. 816-830, 2020. https://doi.org/10.1111/tpj.14664

DONAGEMA, G. K.; CAMPOS, D. V. B.; CALDERANO, S. B.; TEIXEIRA, W. G.; VIANA, J. H. M. Manual de métodos de análise de solo. Rio de Janeiro: Embrapa Solos, 2011.

DONI, F.; ISAHAK, A.; ZAIN, C. R. C. M.; YUSOFF, W. M. W. Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express, v. 4, n. 1, p. 285-290, 2014. https://doi.org/10.1186/s13568-014-0045-8

FILIPPI, M. C. C.; SILVA, G. B.; SILVA-LOBO, V. L.; CÔRTES, M. V. C. B.; MORAES, A. J. G.; PRABHU, A. S. Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, v. 58, n. 2, p. 160-166, 2011. https://doi.org/10.1016/j.biocontrol.2011.04.016

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAOSTAT). Production quantities of Rice, paddy by country: average 1994 – 2019. Roma: FAO, 2021. Disponível em: http://www.fao.org/faostat/en/#data/QC/visualize. Acesso: 26 fev. 2021.

FRANÇA, S. K. S.; CARDOSO, A. F.; LUSTOSA, D. C.; RAMOS, E. M. L. S.; FILIPPI, M. C. C.; SILVA, G. B. Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agronomy for Sustainable Development, v. 35, n. 1, p. 317-324, 2015. https://doi.org/10.1007/s13593-014-0244-3

GALMÉs, J.; RIBAS-CARBÓ, M.; MEDRANO, H.; FLEXAS, J. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. Journal of Experimental Botany, v. 62, n. 2, p. 653-665, 2011. https://doi.org/10.1093/jxb/erq303

GHOLAMALIZADEH, R.; KHODAKARAMIAN, G.; EBADI, A. A. Assessment of rice associated bacterial ability to enhance rice seed germination and rice growth promotion. Brazilian Archives of Biology and Technology, v. 60, n. 1, p. 1-13, 2017. https://doi.org/10.1590/1678-4324-2017160410

GIONGO, A.; BENEDUZI, A.; GANO, K.; VARGAS, L. K.; UTZ, L.; PASSAGLIA, L. M. P. Characterization of plant growth-promoting bacteria inhabiting Vriesea gigantea Gaud. and Tillandsia aeranthos (Loiseleur) L.B. Smith (Bromeliaceae). Biota Neotropica, v. 13, n. 3, p. 80-85, 2013. https://doi.org/10.1590/S1676-06032013000300010

HARMAN, G. E.; HOWELL, C. R.; VITERBO, A.; CHET, I.; LORITO, M. Trichoderma species ‑ opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, v. 2, n. 1, p. 43-56, 2004. https://doi.org/10.1038/nrmicro797

KADO, C. J.; HESKETT, M. G. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology, v. 60, n. 6, p. 969-976, 1970. https://doi.org/10.1094/Phyto-60-969

KLOEPPER, J. W.; SCHROTH, M. N. Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. France: Anais Gilbert-Clarey, 1978.

MATILLA, M. A.; RAMOS, J. L.; BAKKER, P. A. H. M.; DOORNBOS, R.; BADRI, D. V.; VIVANCO, J. M.; RAMOS-GONZÁLES, M. I. Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environmental Microbiology Reports, v. 2, n. 3, p. 381-388, 2010. https://doi.org/10.1111/j.1758-2229.2009.00091.x

MENDES, L. W.; RAAIJMAKERS, J. M.; HOLLANDER, M.; MENDES, R.; TSAI, S. M. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME Journal, v. 12, n. 1, p. 212-224, 2018. https://doi.org/10.1038/ismej.2017.158

MIETHLING, R.; WIELAND, G.; BACKHAUS, H.; TEBBE, C. C. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecology, v. 41, n. 1, p. 43-56, 2000. https://doi.org/10.1007/s002480000021

NASCENTE, A. S. N.; FILIPPI, M. C. C.; LANNA, A. C.; SOUZA, A. C. A.; LOBO, V. L. S.; SILVA, G. B. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, v. 24, n. 3, p. 2956-2965, 2017a. https://doi.org/10.1007/s11356-016-8013-2

NASCENTE, A. S.; FILIPPI, M. C. C.; LANNA, A. C.; SOUSA, T. P.; SOUZA, A. C. A.; LOBO, V. L. S.; SILVA, G. B. Effects of beneficial microorganisms on lowland rice development. Environmental Science and Pollution Research, v. 24, n. 32, p. 25233-25242, 2017b. https://doi.org/10.1007/s11356-017-0212-y

PERAZZOLLI, M.; DAGOSTIN, S.; FERRARI, A.; ELAD, Y.; PERTOT, I. Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadizole. Biological Control, v. 47, n. 2, p. 228‑234, 2008. https://doi.org/10.1016/j.biocontrol.2008.08.008

RÊGO, M. C. F.; ILKIU-BORGES, F.; FILIPPI, M. C. C.; GONÇALVES, L. A.; SILVA, G. B. Morphoanatomical and Biochemical Changes in the Roots of Rice Plants Induced by Plant Growth-Promoting Microorganisms. Journal of Botany, v. 2014, n. 1, p. 1-10, 2014. https://doi.org/10.1155/2014/818797

SAHA, L.; BAUDDH, K. Sustainable Agriculture Approaches for Enhanced Crop Productivity, Better Soil Health, and Improve Ecosystem Services. Ecological and Practical Applications for Sustainable Agriculture. Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-3372-3_1

SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. A.; ARAUJO FILHO, J. C.; OLIVEIRA, J. B.; CUNHA, T. J. F. Sistema brasileiro de classificação de solos. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 2018.

SEN, S.; CHAKRABORTY, R.; KALITA, P. Rice – not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends in food science and technology, v. 97, n. 1, p. 265-285, 2020. https://doi.org/10.1016/j.tifs.2020.01.022

SHORESH, M.; YEDIDIA, I.; CHET, I. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, v. 95, n. 1, p. 76-84, 2005. https://doi.org/10.1094/PHYTO-95-0076

SILVA, M. A.; JIFON, J. L.; SANTOS, C. M.; JADOSKI, C. J.; SILVA, J. A. C. Photosynthetic Capacity and Water Use Efficiency in Sugarcane Genotypes Subject to Water Deficit During Early Growth Phase. Brazilian Archives of Biology and Technology, v. 56, n. 5, p. 735-748, 2013. https://doi.org/10.1590/S1516-89132013000500004

SILVA, V. N.; GUZZO, S. D.; LUCON, C. M. M.; HARAKAVA, R. Promoção de crescimento e indução de resistência à antracnose por Trichoderma spp. em pepineiro. Pesquisa Agropecuária Brasileira, v. 46, n. 12, p. 1609-1618, 2011. https://doi.org/10.1590/S0100-204X2011001200005

SOUSA, I. M.; NASCENTE, A. S.; FILIPPI, M. C. C. Bactérias promotoras do crescimento radicular em plântulas de dois cultivares de arroz irrigado por inundação. Colloquium agrariae, v. 15, n. 2, p. 140-145, 2019. https://doi.org/10.5747/ca.2019.v15.n1.a293

SOUSA, T. P.; SOUZA, A. C. A.; FILIPPI, M. C. C.; LANNA, A. C.; CORTÊS, M. V.; PINHEIRO, H. A.; SILVA, G. B. Bioagents and silicon promoting fast early upland rice growth. Environmental Science and Pollution Research, v. 25, n. 4, p. 3657-3668, 2018. https://doi.org/10.1007/s11356-017-0753-0

SOUZA, A. C. A. Silício e bioagentes na supressão da brusone foliar em arroz. 2014. 48 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Goiás, Goiânia, 2014.

SPENCE, C.; ALFF, E.; JOHNSON, C.; RAMOS, C.; DONOFRIO, N.; SUNDARESAN, V.; BAIS, H. Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biology, v. 14, n. 1, p. 1-17, 2014. https://doi.org/10.1186/1471-2229-14-130

SPERANDIO, E. M.; VALE, H. M. M.; REIS, M. S.; CORTÊS, M. V. C. B.; LANNA, A. C.; FILIPPI, M. C. Evaluation of rhizobacteria in uplant rice in Brazil: growth promotion and interaction of induced defense responses against leaf blast (Magnaporthe oryzae). Acta Physiologiae Plantarum, v. 39, n. 12, p. 258-270, 2017. https://doi.org/10.1007/s11738-017-2547-x

TAIZ, L.; ZEIGER, E.; MOLLER, I. M.; MURPHY, A. Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed, 2017.

TIAN, X.; ENGEL, B. A.; QIAN, H.; HUA, E.; SUN, S.; WANG, Y. Will reaching the maximum achievable yield potential meet future global food demand?. Journal of Cleaner Production, v. 294, n. 1, p. 126285, 2021. https://doi.org/10.1016/j.jclepro.2021.126285

VINALE, F.; SIVASITHAMPARAM, K.; GHISALBERTI, E. L.; MARRA, R.; BARBETTI, M. J.; LI, H.; WOO, S. L.; LORITO, M. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, v. 72, n. 3, p. 80‑86, 2008. https://doi.org/10.1016/j.pmpp.2008.05.005

VITERBO, A.; HAREL, M.; HORWITZ, B. A.; CHET, I.; MUKHERJEE, P. K. Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Applied and Environmental Microbiology, v. 71, n. 10, p. 6241‑6246, 2005. https://doi.org/10.1128/AEM.71.10.6241-6246.2005

Downloads

Publicado

2021-04-16

Como Citar

Trichoderma asperellum AND RHIZOBACTERIA AS AFFECTING BIOMASS ACCUMULATION AND GAS EXCHANGE OF LOWLAND RICE. (2021). Colloquium Agrariae. ISSN: 1809-8215, 17(2), 67-76. https://journal.unoeste.br/index.php/ca/article/view/3841

Artigos mais lidos pelo mesmo(s) autor(es)

<< < 1 2