AN in silico DATA MINING OF THE AMMONIUM TRANSPORTER GENE FAMILY IN Ananas comosus L.

Autores

  • Renato Marcos de Leão Universidade do Oeste Paulista
  • Silvia Graciele Hülse de Souza Universidade Paranaense
  • Tiago Benedito dos Santos UNOESTE

Palavras-chave:

Bioinformatic analysis; pineapple; ammonium; nitrogen transport.

Resumo

Indiscutivelmente, o nitrogênio (N) é um componente importante e essencial para o crescimento e desenvolvimento das plantas. Dentre as fontes de N disponíveis, o amônio é a principal fonte de nitrogênio inorgânico para as plantas, sendo mobilizado pelo transportador de amônio (AMT). Neste estudo, a mineração de dados revelou que no genoma de Ananas comosus L. foram identificados oito genes da família AMT. Com base nessas informações, realizamos uma análise abrangente usando algumas ferramentas de bionformática com a finalidade de caracterizar individualmente os genes identificados. A análise abrangente do AMT fornecerá uma base importante para uma investigação mais aprofundada dos mecanismos regulatórios de AcoAMTs em A. comosus L.

Downloads

Não há dados estatísticos.

Referências

ALI, H.; LIU, Y.; AZAM, S.M.; PRIYADARSHANI, S.V.G.N.; LI, W., HUANG, X.; HU, B.; XIONG, J.; ALI, U.; QIN, Y. Genomic survey, characterization, and expression profile analysis of the SBP genes in pineapple (Ananas comosus L.). Int J Genom., p. 1–14, 2017. https://doi.org/10.1155/2017/1032846.

ALTSCHUL, S.F.; GISH, W.; MILLER, W.; MYERS, E.W.; LIPMAN, D.J. Basic local alignment search tool. Journal of Molecular Biology, v. 215, n. 3, p. 403-410, 1990. https://doi.org/10.1016/S0022-2836(05)80360-2.

BOWERS, J.E.; CHAPMAN, B.A.; RONG, J.; PATERSON, A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, v. 422, p. 433–438, 2003.

BLAKEY, D.; LEECH, A.; THOMAS, G.H.; COUTTS, G.; FINDLAY, K.; MERRICK, M. Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochemical Journal, v. 364, n. 2, p. 527-535, 2002. https://doi.org /10.1042/BJ20011761.

BLOOM, A.J. The increasing importance of distinguishing among plant nitrogen sources. Current Opinion in Plant Biology., v. 25, p. 10– 16, 2015. https://doi.org/10.1016/j.pbi.2015.03.002.

CASTRO-RODRÍGUEZ, V.; ASSAF-CASALS, I.; PÉREZ-TIENDA, J.; FAN, X.; ÁVILA, C.; MILLER, A.J.; CÁNOVAS, F.M. Deciphering the molecular basis of ammonium uptake and transport in maritime pine. Plant Cell Environ., v. 39, p. 1669–1682, 2016. https://doi.org/10.1111/pce.12692.

CAO, J.; SHI, F. Dynamics of arginase gene evolution in metazoans. J. Biomol. Struct. Dyn., v. 30, p. 407–418, 2012. https://doi.org/10.1080/07391102.2012.682207.

CONANT, G.C.; WOLFE, K.H. Turning a hobby into a job: Howduplicated genes find new functions. Nat. Rev. Genet. v. 9, p. 938–950, 2008.

CHOU, H.C.; SHEN, H.G. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE, v. 5, 2010. https://doi.org/10.1371/journal.pone.0011335.

DOS SANTOS, T.B.; LIMA, J.E.; FELICIO, M.S.; SOARES, J.D.M.; DOMINGUES, D.S. Genome- wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea. Genet. Mol. Biol., v. 40, p. 346–359, 2017. https://doi.org/10.1590/1678-4685-gmb-2016-0041.

DUAN, J.; TIAN, H.; GAO, Y. Expression of nitrogen transporter genes in roots of winter wheat (Triticum aestivum L.) in response to soil drought with contrasting nitrogen supplies. Crop Pasture Sci., v. 67, n. 2, p. 128–136, 2016. https://doi.org/10.1071/CP15152.

FERREIRA, L. M.; DE SOUZA, V.M.; TAVARES, O.C.H.; ZONTA, E.; SANTA-CATARINA, C.; DE SOUZA, S. R., FERNANDES, M.S.; SANTOS, L. OsAMT1. 3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnology Reports, v. 9, n. 4, p. 221-229, 2015. https://doi.org/ 10.1007/s11816-015-0359-2.

FAN, X.; NAZ, M.; FAN, X.; XUAN, W.; MILLER, A.J.; XU, X. Plant nitrate transporters: from gene function to application. Journal of Experimental Botany, v. 68, p. 2463– 2475, 2017. https://doi.org/10.1093/jxb/erx011.

FILIZ, E.; AKBUDAK, M.A. Ammonium transporter 1 (AMT1) gene family in tomato (Solanum lycopersicum L.): Bioinformatics, physiological and expression analyses under drought and salt stresses. Genomics, 2020. https://doi.org/10.1016/j.ygeno.2020.04.009.

GASTEIGER, E.; GATTIKER, A.; HOOGLAND, C.; IVANYI, I.; APPEL, R.D.; BAIROCH, A. ExPASy—the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, v. 31, p. 3784–3788, 2003. https://doi.org/10.1093/nar/gkg563.

GOODSTEIN, D.M.; SHU, S.; HOWSON, R.; NEUPANE, R.; HAYES, R.D.; FAZO, J.; ROKHSAR, D.S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, v. 40, n. D1, p. 1178-1186, 2012. https://doi.org/10.1093/nar/gkr944.

GU, R.; DUAN, F.; AN, X.; ZHANG, F.; VON WIRÉN, N.; YUAN, L. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Plant Cell Physiol., v. 54, p. 1515–1524, 2013. https://doi.org/10.1093/pcp/pct099.

GUETHER, M.; NEUHÄUSER, B.; BALESTRINI, R.; DYNOWSKI, M.; LUDEWIG, U.; BONFANTE, P. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology, v. 150, n. 1, p. 73-83, 2009. https://doi.org/10.1104/pp.109.136390.

HAO, D.L.; ZHOU, J.Y.; YANG, S.Y.; QI, W.; YANG, K.J.; SU, Y.H. Function and Regulation of Ammonium Transporters in Plants. International Journal of Molecular Sciences, v. 21, n. 10, p. 3557, 2020. https://doi.org/10.3390/ijms21103557.

HU, B.; JIN, J.; GUO, A.Y.; ZHANG, H.; LUO, J.; GAO, G. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, v. 31, n. 8, p. 1296–1297, 2015. https://doi.org/10.1093/bioinformatics/btu817.

HUANG, L.; ZHANG, H.; ZHANG, H.; DENG, X.W.; WEI, N. HY5 regulates nitrite reductase 1 (NIR1) and ammonium transporter1; 2 (AMT1; 2) in Arabidopsis seedlings. Plant Science, v. 238, p. 330-339, 2015. https://doi.org/10.1016/j.plantsci.2015.05.004.

KROGH, A.; LARSSON, B.; VON HEIJNE, G.; SONNHAMMER, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol., v. 305, p. 567-580, 2001. https://doi.org/10.1006/jmbi.2000.4315.

KRZYWINSKI, M.; SCHEIN, J.; BIROL, I.; CONNORS, J.; GASCOYNE, R.; HORSMAN, D., JONES, S.J.; MARRA, M.A. Circos: an information aesthetic for comparative genomics. Genome Research, v. 19, n. 9, p. 1639-1645, 2009. https://doi.org/10.1101/gr.092759.109.

KUMAR, S.; STECHER, G.; TAMURA, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, v. 33, n. 7, p. 1870-1874, 2016. https://doi.org/10.1093/molbev/msw054.

LOQUÉ, D.; VON WIRÉN, N. Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany, v. 55, p. 1293– 1305, 2004. https://doi.org/10.1093/jxb/erh147.

LUDEWIG, U.; NEUHÄUSER, B.; DYNOWSKI, M. Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett., v. 581, p. 2301–2308, 2007. https://doi.org/10.1016/j.febslet.2007.03.034.

LUDEWIG, U.; WILKEN, S.; WU, B.; JOST, W.; OBRDLIK, P.; EL BAKKOURY, M.; MARINI, A.M.; ANDRÉ, B.; HAMACHER, T.; BOLES, E.; VON WIRÉN, N. Homo-and hetero-oligomerization of ammonium transporter-1 uniporters. Journal of Biological Chemistry, v. 278, n. 46, p. 45603-45610, 2003. https://doi.org// 10.1074/jbc.M307424200.

MARINI, A.M.; SOUSSI-BOUDEKOU, S.; VISSERS, S.D.; ANDRÉ, B. A family of ammonium transporters in Saccharomyces cerevisiae. Mol. Cell. Boil., v. 17, p. 4282–4293, 1997. https://doi.org//doi: 10.1128/MCB.17.8.4282.

MASCLAUX-DAUBRESSE, C.; DANIEL-VEDELE, F.; DECHORGNAT, J.; CHARDON, F.; GAUFICHON, L.; SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann. Bot., V. 105, p. 1141–1157, 2010. https://doi.org/10.1093/aob/mcq028.

McDONALD, T.R.; WARD, J.M. Evolution of Electrogenic Ammonium Transporters (AMTs). Front. Plant Sci., v. 7, p. 352, 2016. https://doi.org/10.3389/fpls.2016.00352.

MING, R.; VANBUREN, R.; WAI, C.M.; TANG, H.; SCHATZ, M.C.; BOWERS, J.E.; LYONS, E.; WANG, M.L.; CHEN, J.; BIGGERS, E. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet., v. 47, n. 12, p. 1435–42, 2015. https://doi.org doi:10.1038/ng.3435.

NACRY, P.; BOUGUYON, E.; GOJON, A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, v. 370, p. 1– 29, 2013. https://doi.org//10.1007/s11104-013-1645-9.

NINNEMANN, O.; JAUNIAUX J.C.; FROMMER, W.B. Identification of a High Affinity NH4+ Transporter from Plants. The EMBO Journal, v. 13, n. 15, p. 3464–71, 1994. https://doi.org/10.1002/j.1460-2075.1994.tb06652.x.

SIMON-ROSIN, U.; WOOD, C.; UDVARDI, M.K. Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus. Plant Mol. Biol., v. 51, p. 99–108, 2003.

SUN, Y.; SHENG, S.; FAN, T.; LIU, L.; KE, J.; WANG, D.; HUA, J.; LIU, L.; CAO, F. Molecular identification and functional characterization of GhAMT1.3 in ammonium transport with a high affinity from cotton (Gossypium hirsutum L.). Physiol. Plantarum, v. 167, p. 217–231, 2018. https://doi.org/10.1111/ppl.12882.

TEGEDER, M.; MASCLAUX-DAUBRESSE, C. Source and sink mechanisms of nitrogen transport and use. New Phytol., v. 217, p. 5–53, 2018. https://doi.org/10.1111/nph.14876.

VON WITTGENSTEIN, N. J.; LE, C. H.; HAWKINS, B. J.; EHLTING, J. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evolutionary Biology, v. 14, n. 1, p. 1-17, 2014.

VON WIRÉN, N.; MERRICK, M. Regulation and function of ammonium carriers in bacteria, fungi, and plants. In Molecular Mechanisms Controlling Transmembrane Transport, Springer: Berlin/Heidelberg, Germany, pp. 95–120, 2004. https://doi.org//doi:10.1007/b95775.

VOORRIPS, R. E. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, v. 93, n. 1, p. 77-78, 2002. https://doi.org/10.1093/jhered/93.1.77.

XIE, T.; CHEN, C.; LI, C.; LIU, J.; LIU, C.; HE, Y. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress. BMC Genomics, v. 19, n. 1, p. 490, 2018. https://doi.org/ 10.1186/s12864-018-4880-x.

XU, G.; FAN, X.; MILLER, A.J. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, v. 63, p. 153–182. 2012. https://doi.org/10.1146/annurev-arplant-042811-105532.

YUAN, L.; LOQUÉ, D.; KOJIMA, S.; RAUCH, S.; ISHIYAMA, K.; INOUE, E.; TAKAHASHI, H.; VON WIRÉN N. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell, v.19, p. 2636–2652, 2007. https://doi.org/10.1105/tpc.107.052134.

ZHANG, Z.; LI, J.; ZHAO, X. Q.; WANG, J.; WONG, G. K. S.; YU, J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics, Proteomics & Bioinformatics, v. 4, n. 4, p. 259-263, 2006. https://doi.org/10.1016/S1672-0229(07)60007-2.

Downloads

Publicado

2021-01-13

Como Citar

Marcos de Leão, R., Graciele Hülse de Souza, S., & Santos, T. B. dos. (2021). AN in silico DATA MINING OF THE AMMONIUM TRANSPORTER GENE FAMILY IN Ananas comosus L. Colloquium Agrariae. ISSN: 1809-8215, 16(6), 10–24. Recuperado de https://journal.unoeste.br/index.php/ca/article/view/3802

Artigos mais lidos pelo mesmo(s) autor(es)