TRANSGENIC TRAITS IN THE COTTON CROP IN BRAZIL: A REVIEW

Autores

  • Juan Piero Antonio Raphael Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências Agronômicas, Departamento de Produção e Melhoramento Vegetal. Avenida Universitária, 3780 - 18610-034 - Botucatu, SP – Brasil

Palavras-chave:

breeding, Gossypium hirsutum, genetically modified organisms, herbicide, pest management

Resumo

Over the last years, the cotton (Gossypium hirsutum L.) crop in Brazil has been substantially modified by a large-scale introduction of biotechnologically-based resources. In this work, a general review on the technical principles and the current status regarding transgenic traits developed for cotton is presented. The use of transgenic cotton, which contains genes isolated from other species, has been increasingly frequent, occupying more than 78% of the crop production area in Brazil in 2017. The development of transgenic cotton is costly and time-consuming, and is concentrated in a few owner groups. Current generations of Bt protoxins isolated from Bacillus thuringiensis (“Cry” and “Vip” proteins) for control of lepidopteran insects and genes conferring tolerance to glyphosate (cp4epsps and 2mepsps) and ammonium glufosinate (pat and bar) are included as products commercially available for growers. Events for tolerance to the herbicides 2,4-D and dicamba, although already developed, require regulatory authorizations in Brazil, and, probably, will be available for commercialization in the coming years. The combination of several transgenic traits (stacked-traits) within an individual genotype is an increasing tendency for new transgenic cultivars to be launched. More recently, promising studies involving transgenic plants have been conducted to obtain resistance to diseases, tolerance to abiotic stresses, and improvements in fiber and seed properties, which may result in release of new traits in the future.

Downloads

Não há dados estatísticos.

Referências

ANDRADE JUNIOR, E. R.; CAVENAGHI, A. L.; GUIMARÃES, S. C. Destruição química de soqueira em variedades de algodoeiro resistentes ao glifosato – Safra 2016. Cuiabá: Imamt, 2017. 8p. (Circular Técnica, 29). Disponível em: < http://www.imamt.com.br/system/anexos/arquivos/359/original/circular_tecnica_edicao29_bx_(1).pdf?1490875649>. Acesso em: 15 jan. 2019.

ANDRADE JUNIOR, E. R.; CAVENAGHI, A. L.; GUIMARÃES, S. C.; CARVALHO, S. J. P. Primeiro relato de Amaranthus Palmeri no Brasil em áreas agrícolas no estado de Mato Grosso. Cuiabá: Imamt, 2015. 8p. (Circular Técnica, 19). Disponível em: < http://www.imamt.com.br/system/anexos/arquivos/294/original/circular_tecnica_edicao19_bx_ok.pdf?1434631723>. Acesso em 15 jun. 2018.

BARROSO, P. A. V.; HOFFMANN, L. V.; SUASSUNA, N. D.; FERREIRA, A. C. B. Algodoeiros geneticamente modificados. In: FREIRE, E.C.(Ed.). Algodão no cerrado do Brasil. 3. ed. Brasília: Abrapa, 2015. cap. 22, p. 807-842.

BLAISE, D.; KRANTHI, K. R. Cry1Ac expression in transgenic Bt cotton hybrids is influenced by soil moisture and depth. Current Science, v. 101, n. 6, p. 783-785, 2011. Disponível em: http://www.currentscience.ac.in/Volumes/101/06/0783.pdf. Acesso em: 25 jul. 2018.

BENNETT, A. B.; CHI-HAM, C.; BARROWS, G.; SEXTON, S.; ZILBERMAN, D. Agricultural biotechnology: economics, environment, ethics, and the future. Annual Review of Environment and Resources, v. 38, p. 249-279, 2013. http://dx.doi.org/ 10.1146/annurev-environ-050912-124612

BONNETT, D. G.; REBETZKE, G. J.; SPIELMEYER, W. Strategies for efficient implementation of molecular markers in wheat breeding. Molecular Breeding, v. 15, p. 75-85, 2005. https://doi.org/10.1007/s11032-004-2734-5

BRASIL. Decreto nº 2, de 1994. Aprova o texto da Convenção sobre Diversidade Biológica, assinada durante a Conferência das Nações Unidas sobre Meio Ambiente e Desenvolvimento realizada na cidade do Rio de Janeiro, no período de 5 a 14 de junho de 1992. Preâmbulo. Diário Oficial da União, Brasília, DF, 4 fev. 1994. Seção 1, p. 1693, Disponível em: http://www2.camara.leg.br/legin/fed/decleg/1994/decretolegislativo-2-3-fevereiro-1994-358280-norma-pl.html/. Acesso em: 20 jul. 2018.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Registro Nacional de Cultivares. Brasília, 2018. Disponível em: http://sistemas.agricultura.gov.br/snpc/cultivarweb/cultivares_registradas.php>. Acesso em: 18 jul. 2018.

CÉLERES. Os benefícios econômicos da biotecnologia agrícola no Brasil: 1996/97 – 2013/14. Uberlândia: Céleres, 2015. Disponível em: http://www.celeres.com.br/docs/biotecnologia/PressRelease2014_Economico.pdf. Acesso em: 18 jan. 2019.

CERNY, R. E. et al. Development and characterization of a cotton (Gossypium hirsutum L.) event with enhanced reproductive resistance to glyphosate. Crop Science, v. 50, p. 1375-1384, 2010. http://dx.doi.org/10.2135/cropsci2009.06.0286

CHAKRAVARTHY, V. S. K.; REDDY, T. P.; REDDY, V. D.; RAO, K. V. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment. Critical Reviews in Biotechnology, v. 34, n.2, p.144-160, 2014. http://dx.doi.org/10.3109/07388551.2012.743502

CHAPMAN, K. D.; AUSTIN-BROWN, S.; SPARACE, S. A.; KINNEY, A. J.; RIPP, K. G.; PIRTLE, I. L.; PIRTLE, R. M. Transgenic cotton plants with increased seed oleic acid content. Journal of the American Oil Chemists’ Society, v. 78, p. 941–947, 2001. http://dx.doi.org/10.1007/s11746-001-0368-y

CIB. Conselho de Informações sobre Biotecnologia. Produtos Aprovados. 2018. Disponível em: < https://cib.org.br/produtos-aprovados/>. Acesso em: 05 jul. 2018.

CONAB. Série Histórica das safras. 2019. Disponível em: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras. Acesso em: 10 jan. 2019.

DANIELL, H.; DATTA, R.; VARMA, S.; GRAY, S.; LEE, S. B. Containment of herbicide resistance through genetic engineering of chloroplast genome. Nature Biotechnology, v. 16, p. 345-348, 1998. http://dx.doi.org/10.1038/nbt0498-345

DONG, H. Z.; LI, W. J. Variability of endotoxin expression in Bt transgenic cotton. Journal of Agronomy and Crop Science, v. 193, p. 21-29, 2007. https://doi.org/10.1111/j.1439-037X.2006.00240.x

EMANI, C. et al. Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnology Journal, v. 1, p. 321–336, 2003. https://doi.org/10.1046/j.1467-7652.2003.00029.x

FABRICK, J. A.; PONNURAJ, J.; SINGH, A.; TANWAR, R. K.; UNNITHAN, G. C.; YELICH, A. J.; LI, X.; CARRIÉRE, Y.; TABASHNIK, B. E. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to Bt cotton in India. Plos one, v. 9, n. 5, 2014. https://doi.org/10.1371/journal.pone.0097900

FERRÉ, J.; RIE, J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, v. 47, p. 501-533, 2002. https://doi.org/10.1146/annurev.ento.47.091201.145234

FIGUEIREDO FILHO, S. A. É possível ter sucesso na produção de algodão BT?: Manejo e custos do algodão convencional na Fazenda São Francisco. In: CONGRESSO BRASILEIRO DO ALGODÃO, 10., 2015, Foz do Iguaçu. Palestras… Abrapa: Brasília, 2015. Disponível em: http://congressodoalgodao.com.br/2015/livro-de-resumos2015/palestrantes.htm. Acesso em: 20 jan. 2019.

FREIRE, E. C.; MORELLO, C. L.; FARIAS, F. J. C.; PEDROSA, M. B.; SILVA FILHO, J. L. Melhoramento do algodoeiro: cultivares convencionais e transgênicas para o Cerrado. In: FREIRE, E.C. (Ed.). Algodão no Cerrado do Brasil. 3. ed. Brasília: Abrapa, 2015. cap. 6, p. 151-201.

GANESAN, M.; BHANUMATHI, P.; KUMARI, K. G.; PRABHA, A. L.; SONG, P. S.; JAYABALAN, N. Transgenic Indian cotton (Gossypium hirsutum L.) harboring rice chitinase gene (chi II) confers resistance to two fungal pathogens. American Joural of Biochemestry and Biotechnology, v. 5, p.63-74, 2009. https://doi.org/10.3844/ajbbsp.2009.63.74

GREEN, J. M.; OWEN, M. D. K. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. Journal of Agricultural and Food Chemistry, v. 59, p. 5819-5829, 2011. https://doi.org/10.1021/jf101286h

HASHMI, J. A.; ZAFAR, Y.; ARSHAD, M. MANSOOR, S.; ASAD, S. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes, v. 42, p. 286–296, 2011. https://doi.org/10.1007/s11262-011-0569-9

HUFF, J. A.; REYNOLDS, D. B.; DODDS, D. M.; IRBY, J. T. Glyphosate tolerance in enhanced glyphosate-resistant cotton (Gossypium hirsutum). Weed Technology, v. 24, p. 289-294, 2010. https://doi.org/10.1614/WT-08-183.1

ISAAA. GM approval database. 2019. Disponível em: http://www.isaaa.org/gmapprovaldatabase/. Acesso em: 10 jan. 2019.

ISAAA. International Service for the Acquisition of Agri-Biotech Application. Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. Ithaca, 2017. 143p. (ISAA Brief, n. 53). Disponível em: http://www.isaaa.org/resources/publications/briefs/53/default.asp. Acesso em: 10 jul. 2018.

JAMES, C. Global status of commercialized biotech/GM crops: 2009. Ithaca: ISAAA, 2009. (ISAAA Brief, n. 41). Disponível em: http://www.isaaa.org/resources/publications/briefs/41/. Acesso em: 22 jan. 2019.

JIANG, Y.; GUO, W.; ZHU, H.; RUAN, Y. L.; ZHANG, T. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnology Journal, v. 10, p. 301–312, 2012. https://doi.org/10.1111/j.1467-7652.2011.00662.x

JIN, L. ZHANG, H.; LU, Y.; YANG, Y.; WU, K.; TABASHNIK, B. E.; WU, Y. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nature Biotecnology, v. 33, n. 2, p. 169-174, 2015. https://doi.org/10.1038/nbt.3100

JOHN, M. E.; KELLER, G. Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proceedings of National Academy of Sciences of the United States of America, v. 93, p. 12768–12773, 1996. https://doi.org/10.1073/pnas.93.23.12768

LAURENT, F.; DEBRAUWER, L.; RATHAHAO, E.; SCALLA, R. 2,4-dichlorophenoxyacetic acid metabolism in transgenic tolerant cotton (Gossypium hirsutum). Journal of Agricultural and Food Chemistry, v. 48, p. 5307-5311, 2000. https://doi.org/10.1021/jf990672c

LEMAUX, P. G. Genetically engineered plants and foods: a scientist’s analysis of the issues (part II). Annual Review of Plant Biology, v. 60, 511-559, 2009. https://doi.org/10.1146/annurev.arplant.043008.092013

LI, X.; LIU, B.; CUI, J.; LIU, D.; DANG, S.; GILNA, B.; LUO, J.; FANG, Z.; CAO, W.; HAN, Z. No evidence of persistent effects of continuously planted transgenic insect-resistant cotton on soil microorganisms. Plant and Soil, v. 339, p. 247-257, 2011. https://doi.org/10.1007/s11104-010-0572-2

LIU, Q.; SINGH, S. P.; GREEN, A. G. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiology, v. 129, p. 1732–1743, 2002. https://doi.org/10.1104/pp.001933

LIU, X. D.; ZHAI, B. P.; ZHANG, X. X.; ZONG, J. M. Impact of transgenic cotton plants on a non-target pest, Aphis gossypii Glover. Ecological Entomology, v. 30, p. 307-315, 2005. https://doi.org/10.1111/j.0307-6946.2005.00690.x

LIU, Y. D; YIN, Z. J; YU, J. W.; LI, J.; WEI, H. L; HAN, X. L; SHEN, F. F. Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biologia Plantarum, v. 56, p. 237–246, 2012. https://doi.org/10.1007/s10535-012-0082-6

LV, S.; ZHANG, K.; GAO, Q.; LIAN, L.; SONG, Y.; ZHANG, J. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiology, v. 49, p. 1150–1164, 2008. https://doi.org/10.1093/pcp/pcn090

MAQBOOL, A.; ABBAS, W.; RAO, A. Q.; IRFAN, M.; ZAHUR, M.; BAKHSH, A.; RIAZUDDIN, S.; HUSNAIN, T. Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnology Progress, v. 26, p. 21–25, 2010. https://doi.org/10.1002/btpr.306

MARTIN, G. S.; LIU, J.; BENEDICT, C. R.; STIPANOVIC, R. D; MAGILL, C. W. Reduced levels of cadinane sesquiterpenoids in cotton plants expressing antisense (+)-delta-cadinene synthase. Phytochemistry v. 62, p. 31–38, 2003. https://doi.org/10.1016/S0031-9422(02)00432-6

MAY, O. L.; et al. Transgenic cotton with improved resistance to glyphosate herbicide. Crop Science, v. 44, p. 234-240, 2004. https://doi.org/10.2135/cropsci2004.2340

MERCHANT, R. M.; CULPEPPER, A. S.; EURE, P. M; RICHBURG, J. S.; BRAXTON, L. B. Salvage palmer amaranth programs can be effective in cotton resistant to glyphosate, 2,4-d, and glufosinate. Weed Techonology, v. 28, p. 316-322, 2014. https://doi.org/10.1614/WT-D-13-00119.1

MOGHADAM, M. M.; SCHROEDER, J.; ASHIGH, J. Mechanism of resistance and inheritance in glyphosate resistant palmer amaranth (Amaranthus palmeri) populations from New Mexico, USA. Weed Science, v. 61, p. 517-525, 2013. https://doi.org/10.1614/WS-D-13-00028.1

MONNERAT, R.; SANTOS, R. C.; LIMA, L. M.; PINHEIRO, M. P. N.; SILVA, C. R. C.; SOARES, C. M. Uso da transgenia para controle do bicudo-do-algodoeiro. In: BELOT, J. L. (Ed.). O bicudo-do-algodoeiro (Anthonomus grandis BOH., 1843) nos cerrados brasileiros: Biologia e medidas de controle. Cuiabá: IMAmt, 2015. p. 183-211. (Boletim de Pesquisa e Desenvolvimento, n. 2).

MURRAY, F.; LLEWELLYN, D.; McFADDEN H.; LAST, D.; DENNIS, E. S.; PEACOCK, W. J. Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Molecular Breeding, v. 5, p. 219-232, 1999. https://doi.org/10.1023/A:1009625801909

MUMM, R. H.; WALTERS, D. S. Quality control in the development of transgenic crop seed products. Crop Science, v. 41, p. 1381-1389, 2001. https://doi.org/10.2135/cropsci2001.4151381x

OGTR. Risk assessment and risk management plan for DIR 091—Commercial release of cotton genetically modified for insect resistance (WideStrike™ Insect Protection cotton). 2009. Disponível em: . Acesso em: 29 jun. 2018.

PADGETTE, S.R. et al. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Science, v. 35, p. 1451-1461, 1995. https://doi.org/10.2135/cropsci1995.0011183X003500050032x

PARKHI, V.; KUMAR, V.; CAMPBELL, L. M.; BELL, A. A.; SHAH, J.; RATHORE, K. S. Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Research, v. 19, p. 959–975, 2010. https://doi.org/10.1007/s11248-010-9374-9

PASAPULA, V. et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnology Journal, v. 9, p. 88–99, 2011. https://doi.org/10.1111/j.1467-7652.2010.00535.x

PAYTON, P.; WEBB, R.; KORNYEYEV, D.; ALLEN, R.; HOLADAY, A. S. Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. Journal of Experimental Botany, v. 52, p. 2345–2354, 2001. https://doi.org/10.1093/jexbot/52.365.2345

PENG, T.; SUN, X.; MUMM, R. H. Optimized breeding strategies for multiple trait integration: II. Process efficiency in event pyramiding and trait fixation. Molecular Breeding, v. 33, p. 105-115, 2014. https://doi.org/10.1007/s11032-013-9937-6

PRADO, J. R. et al. Genetically engineered crops: from idea to product. Annual Review of Plant Biology, v. 65, p. 769-790, 2014. https://doi.org/10.1146/annurev-arplant-050213-040039

RAJASEKARAN, K.; CARY, J. W.; JAYNES, J. M.; CLEVELAND, T. E. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnology Journal, v. 3, p. 545–554, 2005. https://doi.org/10.1111/j.1467-7652.2005.00145.x

RAO, V. S. Herbicide-resistant transgenic crops. In: RAO, V. S. Transgenic herbicide resistance in plants. 1. ed. Boca Raton: CRC Press, 2015. chap. 6, p. 267.

RASHID, B.; SALEEM, Z.; HUSNAIN, T.; RIAZUDDIN, S. Transformation and Inheritance of Bt Genes in Gossypium hirsutum. Journal of Plant Biology, v. 51, p.248-254, 2008. https://doi.org/10.1007/BF03036123

ROMEIS, J.; MEISSLE, M.; BIGLER, F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature Biotechnology, v. 24, p. 63-71, 2006. https://doi.org/10.1038/nbt1180

SANJAYA, V. V. S.; PRASAD, V.; KIRTHI, N.; MAIYA, S. P.; SAVITHRI, H. S.; SITA, G. L. Development of cotton transgenics with antisense AV2 gene for resistance against cotton leaf curl virus (CLCuD) via Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, v. 81, p. 55–63, 2005. https://doi.org/10.1007/s11240-004-2777-7

SANKULA, S; BRAVERMAN, M. P.; OARD, J.H. Genetic analysis of glufosinate resistance in crosses between transformed rice (Oryza sativa) and red rice (Oryza sativa). Weed Technology, v. 12, p.209-214, 1998. https://doi.org/10.1017/S0890037X00043700

SARKAR, B.; PATRA, A. K.; PURAKAYASTHA, T. J. Transgenic Bt-cotton affects enzyme activity and nutrient availability in a sub-tropical Inceptisol. Journal of Agronomy and Crop Science, v. 194, p. 289-296, 2008. https://doi.org/10.1111/j.1439-037X.2008.00312.x

SUNILKUMAR, G.; CAMPBELL, L. M.; PUCKHABER, L.; STIPANOVIC, R. D.; RATHORE, K. S. Engineering cottonseed for use in human nutrition by tissue specific reduction of toxic gossypol. Proceedings of National Academy of Sciences of the United States of America, v. 103, p. 18054–18059, 2006. https://doi.org/10.1073/pnas.0605389103

SWEENEY, J. A.; JONES, M. A. Glufosinate tolerance of multiple Widestrike and Liberty-Link cotton (Gosspyium hirsutum l.) cultivars. Crop Science, v. 55, p. 403-410, 2015. https://doi.org/10.2135/cropsci2014.03.0175

TABASHNIK, B. E.; BRÉVAULT, T.; CARRIÉRE, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nature Biotechnology, v. 31, n. 6, p.510-521, 2013. https://doi.org/10.1038/nbt.2597

TABASHNIK, B. E.; GASSMANN, A. J.; CROWDER, D. W.; CARRIÉRE, Y. Reply to field-evolved resistance to Bt toxins. Nature Biotechnology, v. 26, n. 10, p. 1074-1076, 2008. https://doi.org/10.1038/nbt1208-1383b

VELMOUROUGANE, K.; SAHU, A. Impact of transgenic cottons expressing cry1Ac on soil biological attributes. Plant, Soil and Environment, v. 59, p. 108-114, 2013. https://doi.org/10.17221/616/2012-PSE

WEI, J.; GUO, Y.; LIANG, G.; WU, K.; ZHANG, J.; TABASHNIK, B. E.; LI, X. Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm. Scientific Reports, v.5, n.7714, 2015. https://doi.org/10.1038/srep07714

WU, J. H., ZHANG, X. L.; LUO, X. L.; TIAN, Y. C. Inheritance and segregation of transformants in cotton with two types of insect-resistant genes. Acta Genetica Sinica, v. 30, p. 631-636, 2003. Abstract. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/14579531. Acesso em: 09 jul. 2018.

WU, K. No refuge for insect pests. Nature Biotechnology, v. 12, p. 1273-1275, 2010. https://doi.org/10.1038/nbt.1718

YAN, J.; HE, C.; WANG, J.; MAO, Z.; HOLADAY, S. A.; ALLEN, R. D.; ZHANG, H. Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a ‘‘stay-green’’ phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiology, v. 45, p.1007–1014, 2004. https://doi.org/10.1093/pcp/pch115

ZHANG, H.; DONG, H.; LI. W.; SUN, Y.; CHEN, S.; KONG, X. Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Molecular Breeding, v. 2, p. 289–298, 2009. https://doi.org/10.1007/s11032-008-9233-z

ZHANG, K.; WANG, J.; LIAN, L.; FAN, W.; GUO, N.; LV, S. Increased chilling tolerance following transfer of a betA gene enhancing glycinebetaine synthesis in cotton (Gossypium hirsutum L.). Plant Molecular Biology Reporter, v. 30, p. 1158-1171, 2012. https://doi.org/10.1007/s11105-012-0433-7

ZHANG, Y. J.; XIE, M.; PENG, D. L. Effects of the transgenic CrylAc and CpTI insect-resistant cotton SGK321 on rhizosphere soil microorganism populations in northern China. Plant, Soil and Environment, v. 60, p. 285-289, 2014. https://doi.org/10.17221/192/2014-PSE

ZHAO, J. Z.; CAO, J.; LI, Y.; COLLINS, H. L.; ROUSH, R. T.; EARLE, E. D.; SHELTON, A. M. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nature Biotechnology, v. 21, p. 1493-1497, 2003. https://doi.org/10.1038/nbt907

ZHOU, G.; WANG, Y.; ZHAI, F.; LU, S.; NIMIR, A. E.; YU, L.; PAN, H.; LV, D. Combined stress of low temperature and flooding affects physiological activities and insecticidal protein content in transgenic Bt cotton. Crop and Pasture Science, v.66, n.7, p.740-746, 2015. https://doi.org/10.1071/CP14012

ZHU, S. W.; GAO, P.; SUN, J. S.; WANG, H. H.; LUO, X. M.; JIAO, M. Y.; WANG, Z. Y.; XIA, G. X. Genetic transformation of green-coloured cotton. In Vitro Cellular & Developmental Biology, v. 42, 439–444, 2006. https://doi.org/10.1079/IVP2006777

Downloads

Publicado

2019-04-05

Como Citar

Raphael, J. P. A. (2019). TRANSGENIC TRAITS IN THE COTTON CROP IN BRAZIL: A REVIEW. Colloquium Agrariae. ISSN: 1809-8215, 15(1), 115–129. Recuperado de http://journal.unoeste.br/index.php/ca/article/view/2403

Edição

Seção

Revisão Bibliográfica