MÉTODOS DE MAPPING FEATURES APLICADOS AO PROCESSAMENTO DE SINAIS EEG
Palavras-chave:
Aprendizado de Máquina; Mapping Features; Inteligência Artificial.Resumo
O eletroencefalograma (EEG) é um exame médico que visa registrar a atividade cerebral do indivíduo para análise posterior. Diversas aplicações estão surgindo atualmente para o mesmo, e um fator de grande importância para qualquer aplicação é encontrar padrões e grupos nos sinais e relacioná-los às ações. Atualmente, existem vários classificadores usados para isso, e esses classificadores são aplicados diretamente aos sinais do EEG. No entanto, outra temática utiliza métodos de Mapping Features no processamento dos sinais e posteriormente, realiza a classificação nos sinais resultantes visando obter resultados melhores.
Downloads
Referências
BASHIVAN, P.; RISH, I.; HEISIG, S. Mental State Recognition via Wearable EEG. CoRR, 2016. abs/1602.00985.
BAUMGARTNER, T. et al. Neural Correlate of Spatial Presence in an Arousing and Noninteractive Virtual Reality: An EEG and Psychophysiology Study. [S.l.]: CYBERPSYCHOLOGY & BEHAVIOR 9, Number 1, 2006. https://doi.org/10.1089/cpb.2006.9.30
BERGER, H. Ueber das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, v. 87, n. 1, p. 527-570, 1929. https://doi.org/10.1007/BF01797193
BRENT, W. Physical and perceptual aspects of percussive timbre. 2010. Tese(Doutorado). - University of California, 2010.
CHO, B. H. et al. Attention Enhancement System using Virtual Reality and EEG Biofeedback. Virtual Reality Conference, 2002. 10.1109/VR.2002.99651, IEEE. 0. 156.
COLLURA, T. F. History and Evolution of Electroencephalographic Instruments and Techniques. Journal of Clinical Neurophysiology, v. 10, n. 4, p. 476-477, 1993. https://doi.org/10.1097/00004691-199310000-00007
COVER, T. M.; HART, P. E. Nearest neighbor pattern classification. IEEE Transactions on Information Theory. v.13, n. 1 p. 21–27., 1967. https://doi.org/10.1109/TIT.1967.1053964
CUADROS, D. R. C. et al. Comparação entre as técnicas de MFCC e ZCPA para reconhecimento robusto de locutor em ambientes ruidosos. In: SBMAC - SOCIEDADE BRASILEIRA DE MATEMÁTICA APLICADA E COMPUTACIONAl 30., 2007, Florianopolis. Anais [...]. Florianópolis, SC, 2007.
DELPOZO-BANOS, M. et al. EEG biometric identification: a thorough exploration of the time-frequency domain. Journal of Neural Engineering, v. 12, n. 5 id. 056019, 2015. https://doi.org/10.1088/1741-2560/12/5/056019
DENISKO D, H. M. Classification and interaction in random forests. Proceedings of the National Academy of Sciences of the United States of America. v. 115, n. 8, p. 1690–1692, 2018. doi:10.1073/pnas.1800256115., 2018. https://doi.org/10.1073/pnas.1800256115
F. BISCHOF, W.; BOULANGER, P. Spatial Navigation in Virtual Reality Environments: An EEG Analysis. Cyberpsychology & Behavior, v. 6, n. 5, 2003. https://doi.org/10.1089/109493103769710514
FACHETTI BONGIOVANI, G.; SALOMAO, J. Reconhecimento de comandos de voz no acionamento de eletrodomésticos e equipamentos domicilares. Vitória: Instituto Federal de Educação Ciência e Tecnologia do Espírito Santo, 2017.
GOLDBERGER, A. et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signal. Circulation v. 101, n. 23, p. e215-e220 http://circ.ahajournals.org/cgi/content/full/101/23/e215], 2000. https://doi.org/10.1161/01.CIR.101.23.e215
GUPTA, S. et al. Feature extraction using MFCC. Signal & Image Processing : An International Journal (SIPIJ), v.4, n.4, 2013. https://doi.org/10.5121/sipij.2013.4408
HSU, C.-W.; CHANG, C.-C. &. L. C.-J. A Practical Guide to Support Vector Classification. Taiwan: Department of Computer Science and Information Engineering, National Taiwan University., 2003.
KOLOURI, S.; PARK, S. R.; K. ROHDE, G. The Radon cumulative distribution transform and its application to image classification. CoRR, v. abs/1511.03206, 2015.
LEEB, R. et al. EEG-based “walking” of a tetraplegic in virtual reality. University College London, London - UK, 2004. https://doi.org/10.1155/2007/79642
LEEB, R. et al. Self-Paced (Asynchronous) BCI Control of a Wheelchair in Virtual Environments: A Case Study with a Tetraplegic. Computational Intelligence and Neuroscience, v. 2007, p. 8, 2007. Article ID 79642.
LIN, C.-T. et al. EEG-Based Assessment of Driver Cognitive Responses in a Dynamic Virtual-Reality Driving Environment. IEEE Transactions on Biomedical Engineering, v. 54, n. 7, 2007 https://doi.org/10.1109/TBME.2007.891164
LINDASALWA, M.; BEGAM KASIM RAWTHAR, M.; L., E. Voice Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques. Journal of Computing, v.2, n. 3, 2010.
LOGAN, B. Mel frequency cepstral coefficients for music modeling. In:. INTERNATIONAL SYMPOSIUM ON MUSIC INFORMATION RETRIEVAL (ISMIR) 2000. Massachusetts. Proceedings [...]. PLYMOUTH, MASSACHUSETTS, 2000. v. 28.
LUIZ A.; CARVALHO, J.; DIAS, D. Técnicas de Codificação de Voz Aplicadas em Sistemas Móveis Celulares. Department of Electrical Engineering School of Technology University of Brasilia, 2000.
MACHADO, V. B. Identificação Neural de Bloqueios Cardíacos. 1995 Dissertação (Mestrado). Universidade Federal do Espírito Santo Vitória, 1995.
MCCALLUM, A.; NIGAM, K. A comparison of event models for Naive Bayes text classification. AAAI-98 workshop on learning for text categorization. 752. [S.l.]: [s.n.], 1998.
PAL SINGH, P.; RANI, P. An Approach to Extract Feature using MFCC. IOSR Journal of Engineering (IOSRJEN), v. 4, n. 8, p. 21-25, 2014. https://doi.org/10.9790/3021-04812125
PARK, S. R. et al. The Cumulative Distribution Transform and Linear Pattern Classification. CoRR, 2015. abs/1507.05936.
R. FACHINI, A.; ROBERTO HEINEN, M. Aplicação de MFCC para modelar sons de instrumentos musicais. 1-4. 10.21528/CBIC2013-055. CONGRESSO BRASILEIRO DE INTELIGÊNCIA COMPUTACIONAL – CBIC. 11, 2013, 2016. https://doi.org/10.21528/CBIC2013-055
RABINER, L.; JUANG, B.-H.; B, Y. Fundamentals of speech recognition. [S.l.]: Prentice-Hall Internatinal, 1993.
SCHALK, G. et al. BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Transactions on Biomedical Engineering v. 51, n. 6,p. 1034-1043, 2008, this paper received the Best Paper Award from IEEE TBME.], 2004. https://doi.org/10.1109/TBME.2004.827072
TEIXEIRA DOS SANTOS, M. et al. Processamento de sinais para o monitoramento do estado de ferramentas de corte usando redes neurais artificiais. In: SIMPÓSIO BRASILEIRO DE AUTOMAÇÃO INTELIGENTE - UFES, 1997, Vitória - ES. Anais [...]. Vitória, 1997.
TEIXEIRA DOS SANTOS, M.; ROSETTI DE ALMEIDA, A.; CHIEN CHING TU, C. Detecção do desgaste em fresas frontais utilizando redes neurais artificiais. In: CONGRESSO BRASILEIRO DE ENGENHARIA MECÂNICA, 15., 1999, Águas de Lindóia. Anais [...]. Águas de Lindóia, 1999.
TZANETAKIS, G.; COOK, P. Musical genre classification of audio signals. In: SPEECH AND AUDIO PROCESSING, IEEE TRANSACTIONS, 2002. p. 293-302. https://doi.org/10.1109/TSA.2002.800560
W., H. et al. An efficient mfcc extraction method in speech recognition. IN CIRCUITS AND SYSTEMS, 2006. ISCAS 2006. PROCEEDINGS. 2006 IEEE INTERNATIONAL SYMPOSIUM ON, PP. 4–PP, IEEE, 2006.
YEOM, S.-K.; SUK, H.-I.; LEE, S.-W. Person authentication from neural activity of face-specific visual self-representation. Pattern Recognition, v. 46, n. 4, p. 1159-1169, 2013. https://doi.org/10.1016/j.patcog.2012.10.023
ZHAO, Q.; ZHANG, L.; CICHOCKI, A. EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chinese Science Bulletin, v.54, n. 1, p.78-87, 2009. https://doi.org/10.1007/s11434-008-0547-3
ZWICKER, E.; FASTL, H. Psychoacoustics: Facts and Models. [S.l.]: Springer, 1999. https://doi.org/10.1007/978-3-662-09562-1