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ABSTRACT – In the case of primary commodities, price volatility would 
arise mainly due to disturbances in supply, whereas for industrial raw 
materials, it would be the result of disturbances in demand. In the 
analysis of commodity markets can be seen that information, hedging, 
speculation and physical availability are factors that can influence their 
volatility. Moreover, increased volatility in commodity markets can 
justify the use of information-based processes for modeling the pattern 
of return volatility of these commodities. Since the relevance of 
autoregressive conditional heteroscedasticity (ARCH) family models in 
the solution of problems in economic and financial areas due to their 
applicability and interpretation (the relation between return and 
volatility) have been provided, the aim of this work was to compare the 
Bayesian estimates for the parameters of ARCH processes with normal 
and Student’s t distributions for the conditional distribution of the 
return series of coffee beans price. In addition, informative prior 
distributions were suggested and posterior summaries were obtained by 
Monte Carlo Markov Chain simulation methods. Results show that the 
proposed Bayesian approach provides satisfactory estimates and that 
the ARCH process with Student’s t distribution adjusts better to the 
data. 
Keywords: Bayesian approach; Informative prior distributions; MCMC 
methods. 
 
 
RESUMO – Para commodities primárias, a volatilidade do preço pode 
surgir principalmente por causa de distúrbios na oferta, enquanto que, 
para matérias-primas industriais, pode ser resultado de distúrbios na 
demanda. Na análise de mercados de commodities primárias observa-se 
que informação, hedging, especulação e disponibilidade física são 
fatores que podem influenciar na volatilidade de tais commodities. Além 
disso, o aumento da volatilidade nos mercados dessas commodities 
pode justificar o uso de processos baseados em informação para a 
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modelagem do padrão da volatilidade do retorno destas. Dada a 
relevância da família de modelos autoregressivos com 
heterocedasticidade condicional (ARCH) na resolução de problemas das 
áreas de economia e finanças, devido à sua aplicabilidade e 
interpretação (relação entre retorno e volatilidade), o objetivo deste 
trabalho foi propor uma abordagem Bayesiana e comparar as 
estimativas dos parâmetros de processos ARCH com distribuições 
normal e t de Student para a distribuição da série de retornos mensais 
do café. Foram sugeridas densidades a priori informativas e os sumários 
a posteriori foram obtidos por meio de métodos de simulação de Monte 
Carlo em Cadeias de Markov (MCMC). Os resultados mostram que a 
abordagem Bayesiana proposta proporciona estimativas satisfatórias e 
que o processo ARCH com distribuição t de Student se ajusta melhor aos 
dados.  
Palavras-chave: Abordagem Bayesiana; Distribuições a priori 
informativas; Métodos MCMC. 
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1. INTRODUÇÃO 

 
Heteroscedasticity is often studied as 

part of econometrics, particularly in 
economic and financial time series modeling 
and prediction, where the time-varying 
nature of the conditional variance is 
associated with the concept of volatility. An 
appropriate description of how the volatility 
changes over time is fundamental to evaluate 
the risk of the investments and the price of 
the options. Besides, a correct specification 
of the conditional variance is required for an 
efficient inference of the econometric time-
series model (ENDERS, 2009). 

The analysis of volatility pattern of 
returns generated by commodities has 
important implications concerning the 
formulation of policies for the country's 
economic performance. The origin of 
volatility differs for different types of 
commodities. In the case of primary 
commodities, price volatility would arise 
mainly due to disturbances in supply, 
whereas for industrial raw materials, it would 
be the result of disturbances in demand. In 
the analysis of primary commodity markets 
can be seen that information, hedging, 
speculation and physical availability are key 
factors that can influence the volatility of 
those markets. Moreover, increased volatility 
in primary commodity markets can justify the 
use of information-based processes for 
modeling the pattern of return volatility of 
those commodities (SILVA; SÁFADI;  CASTRO 
JUNIOR, 2005). 

A large variety of models exists to 
estimate the volatility of return series. The 
most common in the literature are the 
autoregressive conditional heteroscedasticity 
(ARCH) models, suggested by Engle (1982), 
and its extension, the generalized ARCH 
(GARCH) models, proposed by Bollerslev 
(1986). The models characterize a non-linear 
dependence among returns due to the serial 
dependency of conditional variance. 
Bollerslev (2008) provided an extensive 
review of the models’ characteristics. 

There are many works in the literature 
about the ARCH family models under a 
Bayesian approach. Geweke (1989) 
presented one of the first investigations for 
ARCH family models in which a special 
reparameterization case employed non-
informative prior distributions. Estimates of 
parameters were obtained from Monte Carlo 
simulation algorithms. Nakatsuma (2000) 
used normal prior distributions for the 
parameters of ARMA-GARCH models and the 
Metropolis-Hastings algorithm to determine 
posterior summaries. Ausín and Galeano 
(2007) suggested a Bayesian approach for 
GARCH models with errors generated by 
Gaussian mixtures. Barreto, Andrade and 
Oliveira (2008) compared Bayesian and 
maximum likelihood methods by simulated 
series, following ARCH processes, with 
different orders and under conditions of 
finite and infinite variance. Moreover, 
Andrade and Oliveira (2011) presented a 
Bayesian approach for ARCH models with 
normal prior distributions for their respective 
parameters and compared credibility 
intervals with bootstrap intervals by 
employing index return series of the Brazilian 
financial market. Finally, Oliveira and 
Andrade (2012) compared the complete 
Bayesian method and the empirical Bayesian 
method for ARCH models using Brazilian 
financial time series and, Oliveira and 
Andrade (2013) constructed different 
Bayesian approaches for the parameters of 
processes of ARCH family with normal and 
Student’s t conditional distributions of the 
return series using a non-informative prior 
distribution.        

Since the context and the relevance of 
the ARCH family models in the solution of 
problems in the economic and financial areas 
due to their applicability and interpretation 
(the relation between return and volatility) 
have been provided, current investigation 
compares the Bayesian estimates obtained for 
the parameters of ARCH processes with 
normal and Student’s t distributions for the 
conditional distribution of the return series of 
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coffee beans price. Informative prior 
distributions were suggested and a 
reparameterization of the models studied was 
taken into account for each case to map the 
parameter’s space on real space. The 
procedure adopts normal prior distributions 
for the transformed parameters. Posterior 
summaries were obtained by Monte Carlo 
Markov Chain (MCMC) simulation methods. 

 
2. PROCEDURES 

 
The regression model proposed by 

Engle (1982) with its mean zero and 
expressed as a linear combination of 
exogenous variables, exhibits the following 
structure:  

 ttt hPΩ|z 0,~1    (1) 

2

1

0 jt

q

=j

jt zα+α=h     (2) 

where tz  represents return series;  P  is 

the parametric distribution, usually normal or 

Student’s t; and, 1tΩ  is the set of 

information available up to time t – 1.  
The interpretation for the model 

defined in (1)-(2) is that returns in linear 
regression follow an autoregressive 
conditional heteroscedasticity of the order q.  

So that model (1)-(2) is plausible 

( 0>ht  during t), there must be 00 >α  and 

0jα  for q,=j 1,... . In addition, process tz  

has finite variance and therefore stationary 
covariance if, and only if, all the roots of the 
polynomial 


q

=j

j

jlα
1

1     (3) 

lie outside the unit radius circle. It may be 
thus shown that the unconditional variance 

of tz  is given by 
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whose condition for stationary covariance 

process is 
q

=j
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Let  T,=t,z=Z t 1,2,...  be a trajectory 

of the return process tz . If normality holds 

for tε , the likelihood function of tz , 

T,+q=t 1,... , conditioned to q first 

observations (presumed to be known) is 
given by  
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with  ′10 ... qα,,α,α=α .  

Presuming that tε  has a standard 

Student’s t distribution, or rather, 

 2/ vv

t
=ε v

t  such that vt ~ Student’s t with 

v degrees of freedom, the likelihood function 

of tz , T,+q=t 1,... , conditioned to q first 

observations, is given by Morettin (2008): 
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with  ′10 ... qα,,α,α=α  and for some v. 

The likelihood functions described in (5) 
and (6) may be maximized with regard to the 

respective unknown parameters α .  
In Bayesian context, the employment of 

the conditioned likelihood function instead of 
the exact likelihood function may be 
undertaken without any great precision loss in 
the estimates. This is due to the fact that one 
of the main advantages of Bayesian inference 
lies in the possibility of adjusting models, even 
in small samples.  

Then, let  T,=t,z=Z t 1,2,...  be an 

observed trajectory of the return. The 
Bayesian approach for the inference of 
parameters of ARCH(q) processes starts from 

the joint likelihood function  α|ZL  defined 

by this trajectory with the prior density  απ  

(it reflects previous knowledge on the 
distribution of the parameters) by Bayes rule 

 π(α)α|ZLZ)|π(α    (7) 

The expression Z)|π(α  is called 

posterior density of parameter(s) of interest 
and explains how these randomized variables 
are distributed after data have been 
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complied with.  
The necessary condition for the 

stationary covariance allows to insure 
variation ranges for the parameters 

q,=i,αi 0,1,... . This way, it can be 

guaranteed that there are intervals  ii b,a , 

q,=i 1,2,...  with 0>ai  and 1<bi , such that 

iii bαa  . It can be also considered 

000 bαa  , with 00 >a  and  2

0 tzEb   

(ANDRADE;  OLIVEIRA, 2011). 
Since this approach makes intensive 

use of MCMC algorithms, it is more 
advantageous to choose a parameter 
transformation that maps the intervals 

 ii b,a  into the domain ),+(  . For this 

purpose, it was reparameterized the 

components of the parameter vector α  
(OLIVEIRA; ANDRADE, 2012), obtaining a new 

vector  ′10 ... qφ,,φ,φ=φ , whose components 

are given by 
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=φ log , q,=i 0,1,2,...  (8)  

During the implementation of the 
MCMC techniques this reparameterization 

allows the generation of values for iα  that 

are more often closer to the mean of the 

interval, i.e.   2/ii b+a , than to the limits of 

the interval. Values for ia  and ib  may be 

chosen based on some prior information, 
for instance, previous studies on the series 
under analysis. 

Due to (8), the likelihood functions in 
(5) and (6) can now be expressed as 
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and  
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where the parameters iα  of the original 

volatility function )(φht  are adequately 

transformed into iφ . 

Assuming that iφ ’s are independent, 

with normal prior distributions 

)σNormal()π(φ ii

20,~ , q,=i 0,1,2,... the 

joint prior distribution for  ′10 ... qφ,,φ,φ=φ  is 

given by 
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Using (9), (10) and (11), the joint 

posterior distributions of φ  are expressed as 
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Thus, the conditional posterior 

distributions of q,=i,φi 0,1,...  are given by 

     iii φπφ|ZLZφ|φπ 11  ,  

 (14)      iii φπφ|ZLZφ|φπ 22  ,

 (15) 

where iφ  is a vector with the model 

parameters except for the parameter iφ . 

Posterior densities have forms that are 
only similar to those of density functions of 
known probability. Consequently, the 
analytic calculation of the parameters’ 
quantities of interest, such as means, mode, 
medians, standard deviation and others 
becomes impossible. The issue may be solved 
by Monte Carlo Markov Chain (MCMC) 
simulation methods. 

The MCMC algorithm to be described 
next comprises the combined use of the 
Gibbs sampler (CASELLA; GEORGE, 1992) and 
Metropolis-Hastings (MH) (CHIB;  
GREENBERG,  1995) algorithms. The 
conditional posterior densities shown in (14) 
and (15) are used by the MCMC algorithm to 
generate a sample from the posterior 



106 
 

Colloquium Exactarum, v. 11, n2, Abr-Jun. 2019, p. 101–110. DOI: 10.5747/ce.2019.v11.n2.e279 

densities given by (12) and (13), respectively. 
The use of the MH algorithm within the Gibbs 
sampler is required since the conditional 
posterior densities do not have closed forms. 

Then, assuming a quadratic loss 
function, the Bayesian estimates for the 
parameters are obtained by means of the 
expected value of the sample generated from 
the posterior density.  
MCMC Algorithm: Gibbs sampler with 
Metropolis-Hastings 
Step 1: Provide the arbitrary initial values for  

     q,=i,φ=φ i 0,1,...00  and compute 
    00

iα=α , q,=i 0,1,... . Execute 1=k .  

Step 2: Generate a new value γ  from the 

conditional density  Z,φ|φπ ii   where  
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Step 3: Calculate the probability of accepting 

the new value γ  in the  1k
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Step 5: Repeat Step 2 to Step 4 for 

q,=i 0,1,...  

Step 6: Execute 1+k=k  and return to Step 
2 until the convergence is verified with some 
criterion (in this study will be used the 
Geweke criterion (GEWEKE, 1992)). 

After the MCMC convergence, the 

original parameters q,=i,αi 0,1,... , may be 

recuperated by means of the inverse 
transformation 

i
φ

i
i

φ

i
i

e+

a+eb
=α

1
, q,=i 0,1,2,...  (16) 

The prediction of the conditional 
variance of an ARCH(q) model, j steps ahead 
with origin in t, is given by 

                      (17) 

(12) 

 

where , if  j – i ≤ 0.   

In the Bayesian approach, the expected 
value with respect to the posteriori density of 

the parameters α  can be approximated by 
the Monte Carlo estimate considering the 

sample α (k), k = 1,2,…,M generated by the 
MCMC algorithm. Thus, we have 

                    
                                                                (18) 
 
3. EMPIRICAL APPLICATIONS 

 
The data refer to historical series of 

monthly spot price in dollars (price/kg) of 
coffee beans paid to the Brazilian producer. 
The series covers the period January 1967 to 
April 2008, with a total of 496 observations 

(www.ipeadata.gov.br). Let tp  be the 

monthly mean of the coffee price and then 

returns are given by  1/ln ttt pp=y . For 

investors (producers), returns of an asset are 
complete and independent summaries of the 
scale of investment opportunity. In addition, 
returns are easier to manipulating than prices 
because of statistical properties more 
tractable. Some descriptive statistics for the 
returns of coffee prices are reported in Table 
1.  

 
Table 1. Descriptive statistics for the return 
of the coffee series. 

monthly mean return 0.005997 

asymmetry coefficient 0.421951 

kurtosis coefficient 4.704808 

standard deviation non conditional 0.091165 

 
Figure 1(a) illustrates coffee prices and 

their respective returns and Figure 1(b) 
shows the behavior of the squared returns. 
The sample kurtosis coefficient shows that 
the return series is leptokurtic, relative to the 
normal distribution, which, along with a 
visual inspection in Figure 1(a), shows that 
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the return series has signs of 
heteroscedasticity and volatility clustering, 
features shared with the economic and 
financial time series. The estimated 
autocorrelations for the squared returns in 
Figure 1(b) also show signs of predictability, 
an evidence of ARCH effects. 

 
Figure 1. Price and return of the coffee series 
(a) and autocorrelation functions of the  

squared return (b). 

(a)
 

 
                                    (b) 

 
First, we fit ARCH(q) models with 

different orders to returns of the coffee time 
series. The orders of the ARCH(q) models 

(with normal and t distributions for tε ) were 

selected by the predictive ordinate criterion 
(POC) (CARLIN; CHIB, 1995).  

POC is a Bayesian criterion based on 
the concept of predictive density in its 
definition, therefore, it compares what is 
predicted to what is observed for making the 
choice between models (VEIGA;  VIVANCO, 
2012). This criterion selects the most 

qualified and parsimonious model which, in 
turn, is also the model that presents more 
robust predictions. 

All the computer routines were 
implemented using the MATLAB© software. 

Both situations a chain of 50,000 
iterations was simulated within the 
implementation of the Gibbs sampler with 
Metropolis-Hastings algorithm. Moreover, 
50% of values were discarded to decrease 
the effect of initial conditions. Values spaced 
in fives, totaling a sample of M=5,000 
observations, were established. The 
convergence of parameters was verified by 
Geweke criterion (G.C.), at 5% significance, 
under the null hypothesis Ho, which was 
established for values obtained between -
1.96 and 1.96 (GEWEKE, 1992).  

Values for ia  and ib  must be chosen 

based on some prior information. In this 

paper, ia  and ib  were chosen based on 

studies in Silva, Sáfadi and Castro Junior 
(2005) about the price and return of the 
coffee series covering the period January 
1967 to April 2002. 

In this study, the adjusted models to 
the returns of the coffee series, according to 
POC, were: ARCH(2) model with POC = 
4.238966e+013 with normal distribution for 

tε  (M1) and ARCH(2) model with POC = 

4.259268e+013 with t distribution for tε  

(M2). 
Table 2 shows Bayesian estimates and 

95% credibility intervals (C.I.) for those 
models, and Figure 2 illustrates the estimated 
volatility from estimates obtained within the 
Bayesian approach by the best adjustment 
model, or rather, ARCH(2) model with t 

distribution for tε  (because this model 

presented the greatest value of POC). 
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Table 2. Bayesian estimates of the M1 and 
M2 models. 

M1 Mean C.I. (95%) G.C. 

0 0.004167 0.004126; 0.004207 -0.860718 

1 0.200220 0.195759; 0.204521 -0.230901 

2 0.150125 0.146811; 0.153428 0.206746 

M2 Mean C.I. (95%) G.C. 

0 0.004165 0.004161; 0.004169 0.145433 

1 0.197857 0.193561; 0.202205 1.624371 

2 0.148829 0.145465; 0.152081 1.453448 

 
Figure 2. Estimated volatility for return of 
the coffee series using ARCH(2) model with t 
distribution.  

 
 

Figure 3 shows the forecast one step 
ahead for the return volatility of the coffee 
series over a period of 12 months. 

 
Figure 3. Forecast of volatility of the return 
using ARCH(2) model with t distribution over 
a period of 12 months (May 2008 to April 
2009). 

 
 
 
 

4. FINAL CONSIDERATIONS 
 
In general, it is important to emphasize 

the feasibility of the Bayesian approach in the 
inference of the parameters of ARCH family 
processes, since it allows the possibility of 
incorporating the experience of experts in 
finance and economy, which is a highly 
relevant issue within the analysis of 
economic and financial series. 

In this paper, we performed an 
empirical Bayesian analysis, through a 
detailed study. However, due to the 
complexity of this analysis, posterior 
estimates could only be found numerically 
and, so we used MCMC simulation 
algorithms. 

The results show that, as a rule, the 
Bayesian approach provides satisfactory 
estimates and is entirely viable in volatility 
return modeling. Besides, the proposal of 
informative prior distributions, coupled to a 
reparameterization of the models under 
analysis, provided a faster convergence of 
the inference process of parameters of ARCH 
family models by MCMC methods. 

In terms of implications for policy 
formulation, the results empirical suggest 
that the creation and promotion of the use of 
instruments market-based hedging strategies 
may be appropriate face of high volatility and 
persistence of strong shocks checked to the 
volatility of these commodity returns. 
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