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Abstract 

Cotton has a considerable economic impact on agribusiness. Strategies to reduce production loss 

due, for example, to pest attacks are increasingly required. Spodoptera frugiperda, known as fall 

armyworm, causes irreversible damage to cotton. In this context, a current approach is the use of 

hyperspectral measurements obtained by remote sensors and processed by machine learning 

algorithms. However, such measures generate data redundancy, making it difficult to extract 

information. An alternative is to apply pre-processing techniques, but little is known about the 

impact these generate on the learning ability of algorithms. This study evaluates the performance of 

machine learning algorithms in identifying cotton plants attacked by pests using pre-processed and 

raw hyperspectral measurements. Data are collected by EMBRAPA, and consist of hyperspectral 

measurements, in the range of 350-2500 nm, referring to eight days of collections in healthy cotton 

plants and attacked by S. frugiperda. Pre-processing techniques to try are baseline removal, 

smoothing, first and second order derivatives. A group of machine learning algorithms, such as 

Random Forest, Support Vector Machine, Extra Tree, was used to model pre-processed and non-

pre-processed hyperspectral measurements. According to the proposed metric, the F-Score and the 

Extra Trees (ExT) algorithm performed better (0.77). So it overlapped the other results with the 

preprocessed dataset. In addition to obtaining the most important lengths for the algorithm to have 

its best performance. Concluding that machine learning with spectroscopy can help the field in a 

promising way. Studies in other crops and with other factors applied to the plant are recommended. 

Keywords: field spectroscopy; supervised algorithms; precision agriculture. 
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Resumo 

O algodão tem um considerável impacto econômico no agronegócio. Estratégias para redução de 

perda de produção devido, por exemplo, a ataques de pragas são cada vez mais requeridas. A 

Spodoptera frugiperda, conhecida como lagarta do cartucho, causa danos irreversíveis ao algodão. 

Neste contexto, uma abordagem atual é o uso de medidas hiperespectrais obtidas por sensores 

remotos e processadas por algoritmos de aprendizagem de máquina. Todavia, tais medidas geram 

redundância de dados, dificultando a extração de informações. Uma alternativa é aplicar técnicas de 

pré-processamento, mas pouco se sabe sobre o impacto que estas geram na capacidade de 

aprendizagem dos algoritmos. Este trabalho avalia o desempenho de algoritmos de aprendizagem de 

máquina ao identificarem plantas de algodão atacadas por pragas utilizando medidas hiperespectrais 

pré-processadas e brutas. Os dados são coletados pela EMBRAPA, e consistem em medidas 

hiperespectrais, no intervalo de 350-2500 nm, referentes a oito dias de coletas em plantas de 

algodão saudáveis e atacadas por S. frugiperda. As técnicas de pré-processamento a serem testadas 

são remoção de linha de base, suavização, derivadas de primeira e segunda ordem. Um grupo de 

algoritmos de aprendizagem de máquina, como Random Forest, Support Vector Machine, Extra 

Tree, foi utilizado para modelar as medidas hiperespectrais pré-processadas ou não. De acordo com 

a métrica proposta o F-Score, o algoritmo Extra Trees (ExT) obteve melhor desempenho (0.77). De 

maneira que se sobrepôs aos outros resultados com o conjunto de dados pré-processados. Além de 

obtermos os comprimentos de maior importância para o algoritmo ter seu melhor desempenho. 

Concluindo que o aprendizado de máquina com a espectroscopia pode auxiliar de modo promissor o 

campo. Recomenda-se estudos em outras culturas, e com outros fatores aplicados à planta. 

Palavras-chave: espectroscopia de campo; algoritmos supervisionados; agricultura de precisão. 

 

 

1. Introduction 

1 .1. Cotton cultivation and agricultural technologies  

Brazil is one of the world's leading producers and exporters of cotton fiber (CONAB, 2024). 

The estimated planted area for this crop in 2022/23 was approximately 1.77 million hectares 

(CONAB, 2024), and the last season in 2019/20 achieved a record production with over 7,372 tons 

of cottonseed, resulting in a productivity of 1,774 kg/ha. Exports in 2020 amounted to 1.9 million 

tons, marking an 18% increase compared to 2019, setting a historical record. Mato Grosso (MT) 

and Bahia (BA) are the two main cotton-producing states in Brazil, cultivating over 88% of the 

currently planted cotton area (CONAB, 2020). 

To achieve increasingly effective production and ensure a strong presence in the market, 

producers need to properly manage their fields. In this case, the use of geotechnologies, such as data 
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obtained through remote sensing, combined with artificial intelligence methods, can contribute to 

improving crop monitoring in various aspects, such as plant nutritional conditions, yield estimates, 

identification of pest and disease attacks, and other related agronomic variables (Suradhaniwar, 

2018). Pest attacks on plants are among the issues that have the most significant impact on crop 

productivity rates (Zhang et al., 2019; Singh et al., 2020). Plant diseases involve some form of 

physiological modification that disrupts their normal processes for healthy development (Singh et 

al. 2020).  

Spectral data analysis collected by remote sensors emerges as a proposal to increase the 

frequency of crop monitoring (Sawicka; Egbuna. 2020), because such data makes it possible to 

identify potential physiological changes in the plant (Jensen, 2014). This is a quick and low-cost 

way to infer information about different crops (Li et al., 2018; He et al., 2016; Perry et al., 2012; 

Thomason et al., 2011). Hyperspectral sensors stand out for their ability to characterize the spectral 

response of targets (He et al., 2016). Plants infected by diseases and pests exhibit differences in 

their spectral response compared to healthy plants because there are changes in the photosynthetic 

process and internal leaf structures (Jensen, 2014). These differences in spectral response can be 

particularly mapped using the visible, near infrared, and mid-infrared regions of the electromagnetic 

spectrum (Zhang et al., 2019). In this sense, an important contribution is to identify the bands that 

best indicate such differences. 

Herbivorous insects can affect cotton at different phenological stages, such as in the 

vegetative phase by consuming the leaves, or in the flowering and boll stages (Gomes; Santos; 

Ávila, 2017). Furthermore, they can affect the composition of amino acids, water content, and the 

oxidative state of cotton (Eisenring et al., 2019). In cotton plants, an insect that causes irreversible 

damage is Spodoptera frugiperda, known as the fall armyworm. 

 

1 .2. Machine learning context  

In recent years, the integration of machine learning and remote sensing has been gaining 

attention in the agronomic sector, including for monitoring diseases and pests in crops. Machine 

learning is a subfield of artificial intelligence that can be applied to model various types of data 

(Raju, 2020). Machine learning algorithms are generally classified as supervised and unsupervised, 

and their main characteristic is the extraction of patterns in a dataset using learning attributes in a 

sample set (Han; Kamber, 2006). Machine learning methods can analyze hierarchical and non-linear 

relationships between independent variables and the dependent variable, often resulting in better 

performance compared to conventional data classification models (Guzmán et al., 2018; Feng et al., 

2019). 
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Machine learning algorithms have been used in the analysis of hyperspectral measurements 

for crop mapping. As an example, there is a study (Abdulridha; Batuman; Ampatzidis, 2019) that 

used two algorithms, radial basis function (RBF) and k-nearest neighbor (KNN), on hyperspectral 

images (400 to 1000 nm) for disease detection in citrus crops. Another study (Nyabako et al., 2020) 

used decision trees to predict the infestation level of Prostephanus truncatus in corn crops. In the 

context of cotton cultivation, Tageldin et al. (2020) investigated various machine learning 

algorithms to detect the fall armyworm (S. littoralis), but the prediction accuracy was relatively 

low, at 84%. A common feature of most of these approaches is the direct analysis of reflectance 

data, without exploring additional processes to improve the predictive capability of the models. In 

this regard, preprocessing techniques for spectral measurement data can be a strategy worth 

investigating. Among such techniques, we have baseline removal, smoothing, first and second-order 

derivatives, standard normal variate, multiplicative scatter correction, and principal component 

analysis (Rinnan; van den Berg; Engelsen, 2009; Yao; Lewis, 2010; Rinnan, 2014). To determine 

the most suitable technique, in most cases, it involves a "trial and error" approach. 

So far, little is known about the impact that preprocessing techniques for hyperspectral 

measurements have on the learning capability of machine learning algorithms in pest mapping in 

crops. In this regard, the objective of this study is to evaluate the performance of machine learning 

algorithms in identifying cotton plants attacked by fall armyworms using preprocessed and raw 

hyperspectral measurements. The specific objectives are as follows: characterize the spectral 

behavior of healthy cotton plants and those under attack by fall armyworms; determine the 

preprocessing technique that improves the machine learning algorithm's ability to identify cotton 

plants under attack by S. frugiperda; and identify the spectral ranges most strongly related to plants 

under attack by these insects. 

 

1 .3. Machine learning algorithms  

There are several machine learning algorithms available in open-source software that are 

suitable for both classification (separating features into classes) and regression (predicting values), 

such as: Decision Tree, Artificial Neural Network (ANN), Random Forests, K-Nearest Neighbors, 

and Support Vector Machine. Each of these algorithms has specific parameters to adjust during 

modeling. 

The Decision Tree algorithm is a supervised and non-parametric machine learning method. 

Its principle is to determine values for a function, which is represented by a decision tree (Mitchell, 

1997). In this type of tree, features are classified from the root node (the beginning of the tree) to a 

leaf node. Each node in the tree specifies a test of a feature attribute, and each descending branch 

from that node corresponds to one of the possible values for that attribute (Mitchell, 1997). Some of 
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the advantages of working with decision trees are that they can be applied to both continuous and 

discrete datasets, do not require assumptions about the frequency distribution of data in each class, 

and can handle nonlinear relationships between features and classes (Mitchell, 1997). 

An Artificial Neural Network or Artificial Neural Network (ANN) is a robust method for 

approximating real values, discrete values, or vectors of values (discrete or real) for a function 

(Mitchell, 1997). It is an abstraction of the biological neural network. An ANN is defined as a 

complex structure interconnected by processing elements called neurons. If the ANN consists of a 

single neuron, it is called a Perceptron, capable of expressing only linear decisions. In this type of 

network, there can be inputs but only a single output with a value of 0 and 1 or -1 and 1. If the ANN 

has two or more neurons, it is called a Multilayer ANN, capable of handling nonlinearly separable 

problems (Mitchell, 1997). 

The operating principle of an ANN is to activate one or more neurons (x0, x1, ...xn) in the 

network; these input values are multiplied by weights (w0, w1, ...wn) that represent the importance 

of each input in relation to the desired output value (y). The result of the sum of weighted inputs is 

added to the activation threshold (θ),   

 u =   

and this value (u) is then passed as an argument to the activation function g(u), which can be 

linear or nonlinear, resulting in the desired output (Mitchell, 1997). In the case of a Multilayer 

ANN, algorithms like backpropagation can use gradient descent to adjust the parameters (weights) 

of the ANN to improve the model's results (Mitchell, 1997). 

The Random Forests algorithm is a supervised algorithm based on the principle of decision 

trees, but it constructs a varied number of trees during the training phase, combining them to make 

predictions with higher accuracy and stability (Han; Kamber, 2006). Each tree relies on values from 

a randomly sampled vector, independently and with the same distribution for all trees in the forest. 

During classification, each tree votes, and the most popular class is returned (Han; Kamber, 2006). 

The K-Nearest Neighbors algorithm is a non-parametric method that assumes that all 

features (training data) are points in an n-dimensional space. The nearest neighbors to an instance 

are defined by calculating a distance, such as Euclidean distance (Mitchell, 1997). You need to 

parameterize a search radius (k) to execute the algorithm, which is often defined iteratively. The 

Support Vector Machine (SVM) algorithm separates the feature space using a hyperplane, which 

maximizes the margin between instances of different classes or values (Han; Kamber, 2006). This 

hyperplane is found using the so-called 'support vector.' 
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1 .4. Performance evaluation metrics 

Different metrics can be used to evaluate the performance of a machine learning algorithm, 

such as (Han; Kamber, 2006): accuracy (or recognition rate), error rate (or misclassification rate), 

model sensitivity (or recall or true-positive rate), model specificity (or true-negative rate), precision, 

and the F1-score (harmonic mean between recall and precision). 

These evaluation metrics determine how "good" or "accurate" a classifier is in predicting 

data and can be applied using a cross-validation system. In a cross-validation with k mutually 

exclusive subgroups (k-fold cross-validation), the dataset is randomly divided into k subsets of 

similar sizes, and the model is trained and tested k times (Han; Kamber, 2006). Cross-validation is 

an iterative process. For example, consider a 10-fold cross-validation, which means a cross-

validation process with 10 repetitions. Using a total of 10 subgroups is recommended in cross-

validation to estimate accuracy (Han; Kamber, 2006). 

 

2. Material and methods  

2 .1. Data collection and preprocessing 

To create an appropriate dataset, cotton plants (Gossypium L.) were cultivated in a 

controlled environment. These plants were housed in a facility (greenhouse) located at Embrapa 

Recursos Genéticos e Biotecnologia in Brasília, DF, Brazil. The plants were grown for 

approximately 14 Days After Emergence (DAE), with fully expanded leaves. Two types of insects 

were used in the experimental setup. S. frugiperda (fall armyworms) were reared in a separate 

environment at 7±1°C, with 65±10% relative humidity and a 14-hour photoperiod. Dichelops 

melacanthus (stink bugs) were sourced from a laboratory colony maintained in a room at 26±0.3°C, 

70±10% relative humidity, and a photoperiod of L14:D10. Both insects were placed in containers 

and distributed among cotton pots, properly labeled. The experiment spanned 8 days, during which 

the spectral behavior of the plants was measured. 

The spectral measurements were conducted over the course of 8 days, from 9:00 AM to 3:00 

PM, with the first day of plant exposure to pests designated as day 1 and the eighth day of exposure 

as day 8. The experiment resulted in 991 collected spectra, with 465 from samples of healthy cotton 

plants and 526 from cotton plants attacked by the insects S. frugiperda or D. melacanthus. The 

average of these signatures for both classes is illustrated in Figure 1. 

The hyperspectral measurements were carried out in a laboratory with ambient light, using a 

portable spectroradiometer, the ASD FieldSpec 3 (Analytical Spectral Devices Inc., Boulder, USA). 

This equipment records wavelengths from 17350 to 1000 nm with a resolution of 1.4 nm and from 

1000 to 2500 nm with a spectral resolution of 2 nm. A Spectralon white panel was used to calibrate 

the instrument before conducting the measurements. 
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Figure 1. Average spectral signatures of cotton. 

 

Source: Author’s own work. 

The figure 1 shows the graph with the spectral signatures of healthy cotton plants (blue) and plants under 

pest attack (orange). 

 

The spectroradiometer was positioned over the leaf, carefully considering the plant's height 

and the equipment's Field of View (FOV). The data recorded by the spectroradiometer were used to 

calculate the estimate of the Hemispherical Conical Reflectance Factor (HCRF) of the plant. HCRF 

is the measurement of interest, meaning it involves the spectral signature of the plant at different 

wavelengths and is calculated according to the following equation (Anderson et al., 2011), 

 

 

 

where: dL corresponds to radiance, ω is the solid angle, θ and Φ are, respectively, the zenith and 

azimuth angles; i corresponds to the incident flux, and r is the reflected energy flux. The value of K 

is the correction factor specific to the equipment itself. 

 

2 .2. Treatment and organization of hyperpectral data 

The data treatment consists of removing spectral regions with noise, as recommended by 

Jensen (2014), and excluding data collected outside the time interval from 9:00 AM to 3:00 PM, 

aiming to minimize the influence of sunlight variation on capturing the spectral measurements of 

targets (cotton plants), as recommended by Jensen (2014). Next, each of the preprocessing 

techniques, such as baseline removal, smoothing, first and second-order derivatives, standard 



8 

Colloquium Agrariae, v. 20, Jan-Dez, 2024, p. 1-15, e244772 

normal variable, multiplicative scatter correction, and principal component analysis, was applied, 

resulting in the preprocessed dataset. The open-source software SpectraGraph was used for this 

purpose. This allowed for comparing the performance of algorithms when processing both non-

preprocessed and preprocessed measurements. Subsequently, the data was organized into training, 

validation, and test sets. 

 

2 .3. Application of machine learning algorithms 

In a computational environment, the class (healthy vs. damaged) is selected as the target 

variable. As input parameters, the hyperspectral curves (bands) were used, and the performance of 

different algorithms in their prediction was evaluated using the default hyperparameters of each 

tested algorithm. To configure and run the algorithms, the open-source computer program Weka 

3.9.5 was used, which is based on specific Python libraries. Some of the algorithms used for the 

proposed framework included k-nearest neighbor (kNN), support vector machine (SVM), artificial 

neural network (ANN), decision tree (DT), and random forest (RF). These algorithms were used to 

model both non-preprocessed and preprocessed measurements. 

The method used to calculate the accuracy metrics of the algorithms is cross-validation. This 

method involves dividing the data into training and validation sets, so that, given the defined 

number of folds, K-1 folds are used for training, and the remaining fold is used for validating the 

algorithm. This process is repeated until each fold has been used to validate the algorithm once. 

Finally, the contribution of each band or spectral index to the algorithm's performance is calculated 

by displaying its Relief-F value. Relief-F uses a kNN score to handle noisy data while dealing with 

incomplete data. It is considered a reliable metric for assessing feature importance and is then 

applied to rank the features based on their higher scores. 

 

2 .4. Identification of wavelengths related to insect infestation 

To identify the contribution of each wavelength in the separation between healthy cotton 

plants and plants damaged by insect infestation, a comparison approach was adopted between the 

best-performing algorithm identified and a baseline algorithm. The baseline algorithm used for this 

comparison is ZeroR, which calculates the average value of the measured variables and uses it as a 

prediction. This machine learning algorithm is considered the baseline for the Weka software. A 

metric score related to this difference in performance between the algorithms is obtained, which can 

be positive or negative and may even return a number above 1 since the improvement can exceed 

100%. This metric score will indicate the most contributive spectral wavelengths for prediction, i.e., 

separating healthy plants from damaged plants. 
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To determine the most contributive spectral regions, instead of just the individual 

contribution of each band (wavelength), the Self-Organizing Map (SOM) clustering algorithm was 

used. SOM is based on an unsupervised artificial neural network (Osco et al., 2021). This algorithm 

applies a competitive learning approach using a neighborhood function. It helps preserve the 

topological properties of input variables and is useful for visualization because it creates a low-

dimensional (2D) representation using high-dimensional datasets (such as hyperspectral data). SOM 

can be executed within Weka 3.9.5. With this, it was possible to identify the spectral regions of 

greatest contribution used by the machine learning algorithm to separate healthy cotton plants from 

plants damaged by insects. 

 

3. Results and discussion 

 Figure 2 displays the algorithm performance using the first derivative dataset, with Extra 

Trees notably excelling. Table 1 corroborates this, highlighting Extra Trees during testing. Despite 

assessing both derivatives, the second derivative didn't offer significant improvement over the first. 

Thus, further study focused solely on the first derivative. Extra Trees demonstrated the highest 

efficiency with an F-Score of 0.77, a 31.17% advantage over the lowest-performing algorithm, NB. 

These results are attributed to redundancy with high dimensionality and the random generation of 

decision trees with the dataset. 

 

Figure 2. Box-plot comparison graph of cross-validation models. 

 

Source: Author’s own work. 

In Figure 2, a box plot compares the performance of the 10 algorithms used in this study. 
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Table 1. Test set results for each algorithm. 

Algorithms F-Score 

LR 0.687 

LDA 0.713 

KNN 0.716 

CART 0.661 

RF 0.750 

NB 0.532 

SVM 0.586 

GB 0.739 

MLP 0.552 

ExT 0.773 

Source: Author’s own work. 

 

The confusion matrix of the Extra Trees algorithm (Figure 3) illustrates TP - true positive, 

FP - false positive, TN - true negative, and FN - false negative. Examination of this matrix reveals 

that ExT encountered comparable challenges in misclassifying healthy plants as damaged (FN = 

37%) and damaged plants as healthy (FP = 37%). 

 

Figure 3. Confusion matrix for the ExT algorithm. 

 

Source: Author’s own work. 
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In Figure 3, the confusion matrix graph of the ExT algorithm, which exhibited the best performance, is 

illustrated. 

The algorithm aims to assimilate a spectral signature for each case. Figure 4 displays the 15 

most important spectra utilized by the algorithm, arranged in descending order from top to bottom. 

The colored bars represent the spectra, with the corresponding wavelength indicated by the numbers 

in front. 

This focused approach enables efficient allocation of computational resources, facilitating 

continuous improvement. By concentrating efforts on the most important wavelengths, resources 

can be redirected to enhance algorithm results and accuracy, leading to more efficient machine 

learning models. Identifying key wavelengths allows for resource allocation to other aspects, 

potentially improving outcomes and guiding future research and optimizations. 

 

Figure 4. First 15 wavelengths used by the Ext. 

 

Source: Author’s own work. 

Figure 4 displays the 15 most relevant spectra used for decision-making by the ExT algorithm. 

 

 While promising, further research is necessary to ensure that agriculture can fully benefit 

from these advancements, minimizing unnecessary impacts on both productivity and the 

environment. 
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4. Conclusion 

Considering that this work aims to evaluate machine learning algorithms and how 

preprocessing can assist in analyzing hyperspectral data collected at the leaf level under attack by 

pests, specifically S. frugiperda and D. melacanthus, the conclusion based on the provided data is 

that the Extra Trees algorithm performed the best with an F-Score accuracy of 0.77. Additionally, 

the preprocessing technique proved to be less effective in this dataset. 

This study highlights the possibility of mapping factors that affect plants through 

spectroscopy, coupled with machine learning, which enables more efficient assessments and 

decision-making. It is recommended to apply this approach to other crops and consider additional 

factors that may influence them. 
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